未来展望

高性能・低環境負荷をめざす 推進工法用材料(薬剤)の未来

た む ら た か し **貴司** 松村石油化成(株) 技術部係長

1 はじめに

推進工法用材料(薬剤)の未来を考える上で欠かせないのは、一つは性能の向上、もう一つは環境負荷の減少であると考えます。昨年、鳩山政権が発足し、鳩山首相は国連の気候変動首脳会合で地球温暖化への対応策として「2020年に日本は1990年比でCO₂排出量を25%削減する」と演説されました。CO₂排出量の削減と推進工法用材料についてまずは考えたいと思います。

推進工法用材料は標準設計配合のように粘土やベントナイト等の数種類の材料を組み合わせて使用する配合から

写真-1 ネオモール21 1.2kg袋と水溶液

スタートしました。その後弊社も含め 各材料メーカ試行錯誤し高性能化及び 一液少量化と安全性の向上が進み、現 在に至っております。弊社の推進工法 用材料を一例として従来配合との比較 致しました(表 - 1)。また、弊社の 滑材及び泥水剤は環境に優しい成分か つpHは中性で安全性にも優れており ます。

写真-2 ホリダス-AG 17kg 紙袋

表-1 従来設計配合と少量化品配合の配合比較(当社例)

		滑材		泥水剤(初期作泥水)		裏込混和材(セメント除く)	
	従	ベントナイト	100 kg	粘土	300kg	ベントナイト	100kg
		マッドオイル	40L	ベントナイト	50kg	フライアッシュ	250kg
	光設		(35.6kg)	CMC	1kg	分散剤	4kg
	従来設計配合	ハイゲル	2 kg			目詰剤	5kg
配合		CMC	2 kg			(セメント	500kg)
(1m³当り)		計	139.6kg	計	351kg	計	359kg
	当	ネオモール21	6 kg	ホリダス-AG	34kg	ウラゴメソイル	125kg
	当社現配合					(セメント	500kg)
		計	6kg	計	34kg	計	125kg

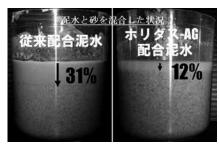


写真-3 各泥水と土砂混合時の性能比較

表-2 当社品の荷姿

品 名	
ネオモール21	1.2kg袋×10個ダンボール
	ケース入り
ホリダス-AG	17kg紙袋入り
ウラゴメソイル	25kg紙袋入り

3 推進工法用材料の少量化と 環境負荷削減

推進工法用材料の少量化により、作業性の改善、現場ヤードの省面積化などが改善され、近隣への多量の粉塵飛散も大幅に減少し周辺環境も良くなるというメリットがありました。さらに、現場までの運搬量が減少するということは、それだけトラックの運搬量もしくは運搬回数が減ることになり、それは CO_2 排出量の削減にも繋がります。表-1を元として条件を仮定し CO_2 の排出量を算出しました(表-3、図-1)。

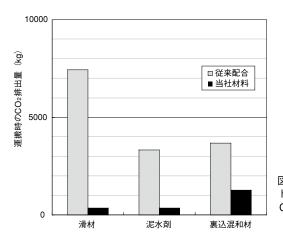
このように、材料の少量化はCO₂の削減に大きく貢献します。現在地球規模の問題である将来的な地球温暖化防止を食い止めるために、材料の少量化は最も有効な手段の一つであると考えます。

4 各社の特長的な材料

弊社以外でも、少量型のみならず各社で精力的に特長的な材料が開発されております。例えば裏込材では一種類の材料だけで作ることのできる「一体化型裏込材」、滑材では従来の水ガラス系可塑剤に変わる固結型滑材としてpHが中性で安全性に優れた「流動性可塑材」、また、最初は滑材として注入し数ヶ月後には硬化して裏込材となる「遅延硬化型滑材」のような滑材と表が上でで変をができまず。推進工法用材料は常に進化しており、今後将来的にも、これまで考えもしなかったアイデアの材料が出現することと思います。

5 推進工法の今後と推進用材料に ついて

近年、CO₂他地球温暖化ガスの急増によるものと思われる、都市部におけるゲリラ豪雨による床下・床上浸水被


表一3 トラック運搬によるCO。排出量の比較

	滑材		泥水剤		裏込混和材	
	従来配合	ネオモール21	従来配合	ホリダス-AG	従来配合	ウラゴメソイル
使用量 (運送量) (t)	581.7	25	258	25	287	100
4tトラック運送回数(回)	146	7	65	7	72	25
CO₂排出量(kg)	7,446	357	3,315	357	3,672	1,275

※算出条件①:年間当り使用量を滑材ネオモール21 25t 泥水剤ホリダス-AG 25t 裏込材ウラゴメソイル100t、また相当する量の従来配合量の使用を比較対象として仮定。

※算出条件②:4tトラックによる一括納入にて1回当りの CO_2 排出量51kg- CO_2

《設定条件: CO₂排出係数102.3g-CO₂/km·t (ディーゼル車・平均速度60km/h)・運送距離500km》

図−1 トラック運搬による CO₂排出量の比較

害も多発しており、雨水排水増補管・ 貯留管のさらなる整備が急がれていま す。合流式下水道の改善に関して、雨 水専用管のさらなる整備が必要になり ます。

現状では下水道以外の管路たとえば 電力・水道・ガス・通信などの埋設管 路の設置や補修に推進工事が使用され ており、今後も増加する傾向にあるも のと思われます。

一方、平成18年度末に管路施設のストック延長は40万kmに達しています。この既設管路のうち、30年を経過したものは、7万kmに達しています。管路の老朽化に起因した道路陥没も、1年当り数千件に達しています。この老朽化した管路の補修に関し、現在コストの絡みもあり管更生工法が主流です。大きくたわんだ老朽化管渠や扁平が進んだ塩ビ管での管更生工法での補修には限界があります。

今後管渠の材質に拘らない改築推進 工法が今より遥かに脚光を浴びる時代 が来るものと思われます。

こういった新しい推進工法において も、滑材・掘削添加材は必要であり、 少量化・中性の CO_2 の排出量が少な い、つまり地球に優しい商品が使われ ていくことでしょう。

6

おわりに

現在、各社の材料の高性能化と少量 化は技術的に高いレベルに達している と考えられ、ここからさらに高性能・ 低環境負荷製品としていくのは容易で はないと思われますが、将来に向けて さらなる開発を継続させてゆくことが 推進工法材料メーカとしての責務であ ると考えております。

【参考文献】

- 1) 国土交通省:国土技術政策総合研究 所資料第141号