爾下水道の再構築

ベビーモール工法による老朽管入替工法 鋼管削進の応用

1 工法について

ベビーモール鋼管削進工法での老朽 管入替工法は、一般の方法と比較して 全く異なる。

不要になった老朽管にしても、内 管(塩ビ管・FRP管)を引き抜くにし ても、その管回りを覆うことのできる 鋼管で削進し、その都度、または、鋼 管削進後に老朽管を回収する方法であ る。削進する鋼管径は非常に大口径と なる場合もある。ベビーモール工法機 の対応可能最大鋼管径は φ 1800 であ る。その為に最大の老朽管は φ 1500

管径により限られたものとなる(**表**-1、写真-1~3)。

までとなる。鋼管削進距離は機種と鋼

写真-2 BRGK-7030型

写真-3 KYT-8090型

表一1 機械と仕様

型式	KYT-408WH	KYT-5030WH	KYT-8090WH	
最大鋼管径(φ)	600	1200	1800	
機械寸法 (長さ×幅×高さ)	1950×500×1200	1950×500×1200	2250×1000×1750	
回転トルク(max)	1600kg-m	3200kg-m	9000kg-m	
推進力押・引(ton)	20-10	35-17.5	35-17.5	
油圧動力	22KW	22+22KW	22+22KW	
標準立坑	φ 2500	φ 2500	φ 3000	
発電機容量	60KVA	90KVA	90KVA	
重量	1200kg	1800kg	2500kg	
最大老朽管HP管径	400HP	800HP	外径 φ 1500	

型式	BRGK-1818	BRGK-7030	BRGK-10050	
最大鋼管径 (φ)	600	1200	1800	
機械寸法 (長さ×幅×高さ)	1800×660×1300	2050×1000×1500	2050×1000×1750	
回転トルク (max)	3600kg-m	6000kg-m	9500kg-m	
推進力押・引 (ton)	35-17.5	35-17.5	35-17.5	
油圧動力	22+22KW	22+22KW	22+22KW	
標準立坑	φ 2500	φ 3000	φ 3000	
発電機容量	90KVA	90KVA以上	90KVA	
重量	1800kg	2200kg	3000kg	
最大老朽管HP管径	500HP	800HP	1500HP	

※ベビーモール機として使用の場合

衣一と	実績集計

工事件名	発注者	鋼管径	塩ビ管径	距離	スパン	土質	陶管	
中部処理区関内下水道再整備工事 (その9)	水戸市	600	250	5.8	1	砂質 シルトN値3	φ 350	逆行していた
H9公共下水道新荘第1・五軒排水区 市道枝線(3-1)	水戸市	700	500	17.95	1	ローム	φ 900	老朽管内へモルタル注 入後ベビーで壊しなが ら撤去
中部下水処理場場内排水管整備工事	横浜市南部下水道建 設事務所	1000	600	198.65	8	砂質	シルト	φ 600HP
佐渡一周線離島地方道改築工事 既設管入替工	佐渡地域振興局 地域整備部	800	600	16.00	1	砂レキ	φ 600 塩ビ管	
習志野市芝園I丁目先	千葉県	400		160.0	4	砂	250	引抜き、鋼管引き抜き
中越地震復旧工事鋼管推進・ 既設 φ 300 布設替工(仮称)	刈羽村役場	500	300	24.70	1	砂レキ	φ 300	
品川区八潮二丁目付近管渠補修工事	東京都	500	300	24.00	1	シルト	H700	既設2号より施工
275KV新宿線1番本移設工事他1件	東京都	800	500	18.00	1	シルト	H500	
町田市公共下水道小山町・相原町 汚水枝線その5工事	脚東京都新都市建設 公社	450	200	5.70	2	普通土	φ 150VU	
町田市公共下水道小山町・相原町 汚水枝線その5工事	脚東京都新都市建設 公社	450	200	2.55	1	普通土	φ 150VU	

※一部抜粋

2 現在までの施工実績

本格的なベビーモール老朽管入替工 法による実績は残念であるがごくわず かである ($\mathbf{表}-\mathbf{2}$)。

ただし、入替ではなく地中に放置されている管の回収工事、新設工事の際の事故部分の改修工事、他工法による削進途中のトラブル先導管の回収、または、途中にあった埋設物の切断等の迎え堀等老朽管入替工法と同じ作業方法で解決してきた実施工は多々ある。

3 施工実績の少ない理由

現時点では、老朽管入替の需要が少ないこと。また、ベビーモール鋼管削 進工法による入替工法が、まだ一般に 理解されていないことも考えられる。

そこで、本稿ではベビーモール鋼管 削進での機械仕様と可能削進距離、必 要最大鋼管径等を知ってもらい、この 先施工が簡単に計画されるよう説明を したいと思う。

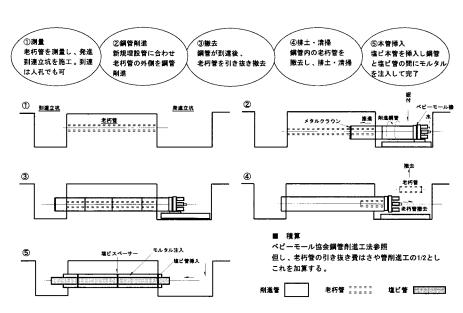


図-1 鋼管削進による入替工程図

4 協会員の老朽管入替の対応について

協会員のほとんどが施工時の数々のトラブル等を解決してきているため、老朽管入替は戸惑うことなく施工ができると思う。いずれにしても、鋼管削進の最大の特長を生かした方法である。鋼管内にオーガ等が入っていないために取り込み回収する方法は何ら

鋼管削進工法と変わらないからである (図-1)。

5 施工の範囲について

可能範囲はベビーモール積算資料 (P21、2-5Aの表)から削進鋼管径・標準可能距離・機械の選定を通常の鋼管 削進と同様に選定することができる。