総言所估力方式

高耐荷力方式の発展の経緯と課題

1 はじめに

国土交通省調査による2008年度の下水道管路の年間施工延長は約8,120km、そのうち608.6kmが推進工法によって行われている。608.6kmのうち80.4%、489.5kmが呼び径700以下の小口径管推進工法によって占められている。推進工事の約8割は小口径管推進工法で行われているのである。

今日の小口径管推進工法は、昭和50年4月の旧労働省労働基準局長通達に大きく背中を押されたと言えよう。この通達によって、内径が800mmに満たない管内での人的作業は一切禁止されることになった。それまでは、口径600mm未満の管内での作業も、それ自体は特異なものとして受けとめられることはなかった。昭和23年、我が国最初の推進工事として記録に残されている口径は600mmであり、狭いと感じながらも管内作業をごく普通に行っていたことになる。

このように、推進工法、なかでも小口径管推進工法は、ここに至る過程は必ずしも平穏ではなかった。昭和時代には下水道工事の建設需要に恵まれたこともあり、数多くの工法が開発され

ることとなったが、その後の内的および外的要件よる競争や淘汰という激流にのみ込まれて、二度と浮上できずに消滅した工法も多い。しかし、現在、名を留めている推進工法の存在理由を問うなら、それは厳しい施工環境をくぐり抜け、時代の要請に対応できたとからという一言につきる。

以下では、小口径管推進工法高耐荷力方式がこれまで抱えてきた課題を整理し、さらに現在までに進展した過程と今後本方式が目指すべき方向性について記述する。

2 小口径管推進工法開発の背景

下水道整備の拡大に伴い、主に施工者による研究・開発に拍車がかかり、多種多様な工法が考案されて誕生した。この小口径管推進工法は、当初、方向制御に難点があったが、方向修正制御機能を有する先導体の開発に取り組むことで、施工精度は格段と向上し、それによって、さらに推進延長の増大が図られることとなった。最近では、掘削、土砂搬出等の機械化、省力化により、作業性、効率性、安全性が大幅に改善されている。その他、推進

管の改良や規格の改訂、設計積算、基準の見直しなどが順次行われ、それに合致しながらより効率的かつ合理的な工法へと進展している。対象土質についても、礫、粗石、岩盤等への破砕機能を持った先導体の考案・開発が進められ、それによって適応土質が拡大し、最近では長距離化や曲線推進等での推進力低減手法などの施工技術が際だって注目を浴びるようになっているところである。

それらの工法は、施工環境の多様化に対応すべく関係者の絶え間ない挑戦の結果でもある。難易度の高い施工条件であっても、施工実績を重ねるうちに、ごく普通と認識される施工条件へと変わり、さらにその条件を超える難工事の施工可否を問われながら、これらの工法はさらに高度化してきたのである。

小口径管推進工法では、作業員の管 内作業は不可能である。そこで機械操 作はすべて遠隔操作とするのが前提 で、現場から発信される膨大なデータ を取捨選択し、それらを最大限施工に フィードバックさせながら施工のリス クの回避を行い、その結果として到達 しているのが実情である。

2.1 開発当初のテーマ

①遠隔操作が可能であること

推進管内に作業員が入れないことから、遠隔操作による推進方式が不可欠である。先導体で掘削するためには、切羽の状況確認やさらに掘削した土砂の排土は、以前のようなトロ搬送では困難なことから、遠隔操作で自動的に連続排土する方法が求められた。機器、設備ともに確実、かつ操作方法が容易であることも必要であった。

②先導体の故障や推進管の破損などの トラブルを生じさせないこと 作業員が直接対応できない先導体や 推進管のトラブルは、作業工程に影響 を及ぼすことは必至で、それを確実に 生じさせないことが必要である。

③引抜き、引戻しができるシステム であること

土質状態によって、方向制御が不可能に陥った場合、障害物への遭遇、あるいは先導体や管内配管設備や推進管などに不具合が生じた場合に、先導体や推進管の引戻しができることが必要である。

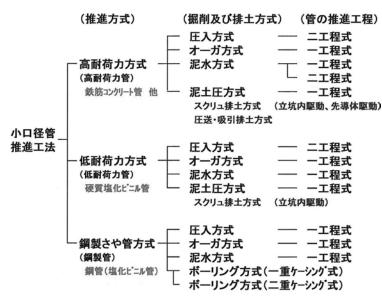


図-1 小口径管推進工法の分類

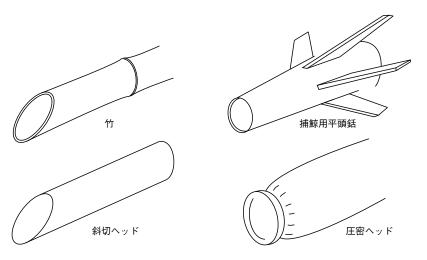


図-2 斜切と揺動型

④継手は堅牢で漏水は皆無であること 漏水の確認や対応が直接人力で不可 能であるために、確実に止水性が確保 できる継手構造であること。

⑤切羽地山の安定保持が

必要であること

切羽の安定保持が可能となる掘進機 構であることが必要。大中口径管の方 式システムと同様の切羽安定保持機能 を有することが必要である。

⑥工法の選定時に、実績が少ない工法 でもその適用性が評価できることが 必要

2.2 方式別の技術開発経緯について

このような開発テーマを掲げそれらを開発し、実績を重ねた結果、現在の小口径管推進工法は図-1のような推進方式として確立し、分類されている。以下では、小口径管推進工法高耐荷力方式の圧入、オーガ、泥水および泥土圧の各方式の開発の経緯を以下に示す。

①圧入式

圧入方式は、現在では二工程式のみが分類されている。まず、一工程目で誘導管を無排土で圧入掘削するが、その際、精度確保のために誘導管先端部に方向修正機構を設けている。この機構には、斜切型と揺動型がある。斜切型は、先端を「竹」を斜めに切ったような形状で、推進時に地山に圧密貫入し、その際の地山の抵抗力によって方向修正を行うものである。揺動型は、捕鯨で用いられた「特殊な銛」の先端形状の圧密掘削へッドが開発され、これにより誘導管内部の修正機構を有効に発揮することが可能となった(図-2)。②オーガ式

土木、建築の基礎杭工事に使用されているアースオーガを水平方向に使用したのがこの工法の始まりとされている。アースオーガを精度良く推進させるために、先端部に4本のステアリン