絕低而估力方式

低耐荷力方式の誕生から標準化まで、 そして現状の課題と展望

事本 健一 公益社団法人 日本推進技術協会 低耐荷力部会長

1 はじめに

低耐荷力方式は、小口径管推進工法 のうち塩ビ管など耐荷力の小さな管材 を推進するものです。

塩ビ管は、鉄筋コンクリート管と比べて、耐食性や流下性能に優れていることから、開削では早くから主流になっていましたが、耐荷力が小さく可撓性が大きいため推進管としての利用は遅れて1980年代半ばから始まりました。以来20年余りを経過し、平成20年度の実績では小口径管推進延長489.5kmのうち263.1kmと過半を占め、特に呼び径250以下では主流になっています。

これは、最初に述べた特長以外に、 軽量で作業性が良く、管材の価格が安 いなど、高耐荷力方式に比べて経済的 であることも大きな理由です。

しかし、その一方で低耐荷力のため に施工上の制約を受け、適用条件は高 耐荷力方式と比べて狭くならざるをえ ません。

ここでは、このような条件下で低耐 荷力方式の誕生から進化の過程、現状 での課題、今後の展望について考えます。

2 低耐荷力方式の誕生

小口径管推進工法で塩ビ管を推進する試みは1980年代半ばから行われていましたが、全推進力を推進管に作用させる方法では、推進延長が限定されていました。

1987年から1988年にかけて3つ の工法がそれぞれの方法でこの問題を 解決しました。

エンビライナー工法(オーガ方式ー工程式)は、先導体と塩ビ管との縁を切り、先導体に作用する推進抵抗力を管内のケーシングにより推進ジャッキに伝達し、推進管には周面摩擦抵抗のみを負担させました。

スピーダー工法(圧入方式二工程式)は、水道管敷設用の機械を進化させ、 一工程目で鋼製のリード管を到達立坑まで圧入し、その末端にカッタヘッドとスクリュを装着し、二工程目ではこれらと塩ビ管との縁を切って推進することにより推進管には周面摩擦抵抗のみを負担させました。

エンビモール工法(二工程式)は、 一工程目は圧入方式二工程式と同様に 鋼製のリード管を到達立坑まで圧入 し、二工程目では到達立坑から拡大 ヘッドを取りつけた塩ビ管を牽引する ことにより推進延長を伸ばしました。

3 低耐荷力方式の進化と標準化

1990年代に入り、オーガ方式一工程式や圧入方式二工程式の工法が多く実用化されました。

また、送排泥管などをユニット化したものを推進力伝達ロッドとして利用する泥水方式(一工程式のユニコーン工法、圧入方式二工程式パス工法)が登場し、現在ある方式(工法)がすべて出そろいました。

しかし、このころはまだ塩ビ管の規格や設計積算基準が各工法バラバラで した。

塩ビ管については、開削用のVU管をリブカラーで接合するもの、厚肉のVP管、VM管にステンレス(SUS)カラーとゴムリングを装着して差し込み接続するもの、同じVP管、VM管の両端をスパイラル加工しねじ込み接続するものなどがありました。

1995年「下水道推進工事用硬質塩 化ビニル管 JSWAS K-6-1995」が知日 本下水道協会から発行され、管材や継 手が標準化されました(表-1)。

表-1 直管の種類 (JSWAS K-6-1995)

種類	略号	管種	接合方式	呼び径範囲
リブカラー付直管	STRS	VU	接着	200~300
SUSカラー付直管	SUSR	VP	ゴム輪	200~300
スパイラル継手付直管	SSPS	VP	接着	200~300

表-2 直管の種類 (JSWAS K-6-2009)

種類	略号	管種	接合方式	呼び径範囲
SUSカラー付直管	SUSR	VPまたはVM	シール材	150~450
スパイラル継手付直管	SSPS	VPまたはVM	接着	150~450

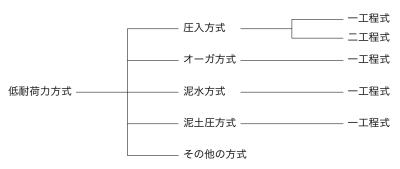
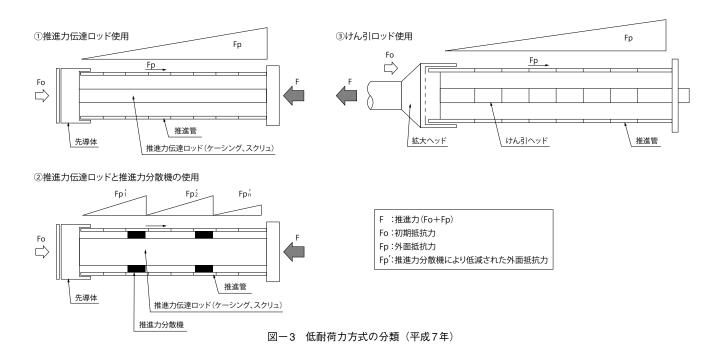


図-1 低耐荷力方式の分類(平成7年版)

図-2 低耐荷力方式の分類(2010年版)

最新の2009年版では、肉厚が薄く継手部が管外周より外側にはみだすため推進には問題があったリブカラー付直管 (VU管)が削除され、呼び径範囲は $150\sim450$ に広がりました($\mathbf{表}-\mathbf{2}$)。


また設計積算の標準化も、1995年 (平成7年)「設計積算要領 小口径管 推進工法 低耐荷力方式編(案)」(日 本下水道管渠推進技術協会)の発行に よりスタートしました。

平成7年版と2010年改訂版を比較 します。

現在の2010改訂版には、平成7年版にあった圧入一工程式とその他の方式がありません。

また平成7年版では、設計積算について詳細に説明しているのは、圧入方式一工程式、二工程式とオーガ方式一工程式の3種類のみです。

平成7年版では、低耐荷力方式の施工方法は3つに分類されていました。2010年改訂版に、このような分類はありませんが、③けん引ロッドはありません。②推進力分散機は長距離推進用に最近復活しました(図-3)。

