館性化した推進技術

埋設管の改築も 推進技術でらくらく可能であるのに 改築推進工法が普及しないのはなぜか

 ですがませき。

 大林道路(株) 顧問 (本誌編集委員)

1 管の劣化診断と改築工法

鉄筋コンクリート構造物や土構造 物、あるいは鋼材、化学加工品などさ まざまな材料がインフラには使用され ている。これらの材料は、時間経過と ともに徐々に劣化し、あるいは大地震 のような大きな外力が加わって変形 し、一定の条件を超えると破壊される。 これらの劣化や変形に対応して、でき るだけ長時間使用できるように維持管 理されて、所定の期間使用され続ける。 下水道管は、管内を流れる汚水の影響 で内面が腐食し、あるいは管周りの地 盤からの外力をうけて変形し、変形が 一定以上に大きくなるとクラックが生 じ破壊に至る。大地震時の地盤変状の ような大きな外力が管体に加わると、 設置後の年数が経過していなくても管 中心線形が移動し、継手のズレや不陸 蛇行を生じる。

このように、埋設管の状況によって 変形のタイプはさまざまで、補修する 工法も多種多様のものが開発実用化さ れている。管路管理者は、インフラの 特性や変形に表れる劣化の程度とタイ プに適した補修工法を選定し、適切な 時期に補修を行いできるだけ長期間の 使用を目指す。大地震など特殊な要因がなければ、埋設管の耐用年数は30年~50年とされており、使用に耐えなくなると劣化した管を入替える。

小口径下水道管は、主に鉄筋コンクリート管と硬質塩化ビニル管が使用されている。使用された管材によって、劣化の進み方は大きな違いがあり、鉄筋コンクリート管では、管内を流下する下水の影響で、発生する硫化水素によって内面が腐食し、やがてコンクリート内の補強用の鋼線を腐食し、管体が崩落するまで進行する。硬質塩化ビニル管など可とう性管は、管本体が腐食するというよりは、管外周に作用する土水圧の影響で扁平化などのたわみ変形を生じ、あるいは、地震の影響

や近接した工事の影響などで管の 設置位置がズレるタイプの変形を おこす。図-1は、汚水から発生 する硫化水素の影響で鉄筋コンク リート管が内面から腐食するメカ ニズムを模式的に示している。管 内面全体が一様に劣化するのでは なく、上半断面の気相部の腐食が 進みやすく、下半断面の液相部は、 管材本体の腐食はほとんど進行し ないと言われている¹⁾。流れる汚 水の質や流下速度によっても腐食の進 行は大きく変わってくる。小口径管の 劣化は、管種と用途、設置条件などに よりさまざまである。汚水による内面 からの劣化である内面劣化、扁平化な ど断面形状が変形する断面劣化、管中 心線が蛇行や上下に変形する線形劣化 に分類できる。表-1は、小口径管の 劣化の種類と補修工法について記した ものである20。内面劣化と断面劣化は、 大きな継手ズレのほかは管内からの調 査が可能である。線形劣化は、ゆるい たるみ変形以外は管内からの調査は困 難であり、詳しく調査をするというよ りはそのまま敷設替えに進むケースが 多い。下水道管は、経年とともに劣化し さまざまな要因で流下性能が低下する。

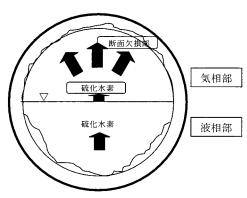


図-1 硫化水素等による管内面腐食変形

2 下水道管の地震被害

東日本大震災の下水道管への影響は 小口径管を中心に1都10県で相当の 延長になる。大津波の影響で大被害を 受けた下水処理場が沿岸付近にあり、 現状では復旧方法の方針が立たないた め、管路の復旧は応急復旧も取りかか れていないところが多い。被害の実態 も次第に明らかになっており、できる だけ早く流下だけでも行うため応急的 な復旧などが順次着手されている。表 -1は、平常時の管路の劣化と補修工 法の関連を示すが、今回の大地震被害 の場合のように、管路設置地盤が1m 近く沈下したり、大津波で施設全体が 流失するなどの場合は、ここでいう劣 化の範囲から外れる。逆に、震源地か ら相当遠く離れた千葉県浦安市や東京 都江東区、埼玉県久喜市など液状化に よる被害が顕著な例がある。被害の詳 しい程度は今後の被害調査報告を待た なければわからないが、内面が腐食す る変形は補修対象にほとんど含まれな いことは容易に想定される。地盤変状 による管の断面変形や大きな線形変 形、逆勾配など大きな断面変形や線形 変形が主体であって、管路に対する被 害の補修工法としては、簡易な更生工 法などの出番は少なく、改築推進、開 削による敷設替えや新規の推進工法な どが中心となるが、応急的にできるだ け早く流すための原状回復を原則とし た震災復旧となると、選定基準も大幅 に変わる。

3 管路の耐震設計と液状化

東日本大震災では、小規模住宅に対する液状化被害が大々的に報道され、液状化による管路被害はあまり大きく報道されないが、下水道管路など埋設管の液状化被害も激しい。震源近くでは

表一1 小口径管劣化の種類と補修の考え方

劣化の種類	内面劣化	断面劣化	線形劣化
劣化の内容	腐食損傷、内面荒れ 物理的損傷 強度低下	扁平化 小継手ズレ 欠落	逆勾配、たるみ 大継手ズレ、脱却 大欠落、崩落
流下性能への影響	円形断面確保 管内表面損傷	有効断面減少 管中心ずれなし	管中心不陸、蛇行 断面大変形
流下能力低下の要因	内表面平滑度低下	有効断面減少	有効動水勾配変化
劣化の原因	流下する汚水の影響	管外からの荷重の影響	
補修	変形レベルに合わせて、 の工法を選定	改築推進、開削工法で 敷設替え	

表-2 下水道管路施設の耐震の考え方

X 2 1 小屋日間//60X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
	重要な幹線		その他の管路					
耐震設計手順	①調査 ②地盤条件の設定 ③マンホールと本管の接続部と管きょと 管きょの継手部の検討 ④管本体とマンホール本体の検討 ⑤液状化時の浮上がり、沈下防止対策の 検討		①調査 ②地盤条件の設定 ③マンホールと本管の接続部の検討 ④液状化時の浮上がり、沈下防止対策の 検討					
地震動	レベル1地震動	レベル2地震動	レベル1地震動	レベル2地震動				
	0	0	0	_				
耐震性能	設計流下能力の確保	流下機能の確保	設計流下能力の確保	_				
耐震計算	応答変位法	応答変位法	応答変位法	_				
耐震設計法	許容応力度法 使用限界状態	終局限界状態	許容応力度法 使用限界状態	_				
地震外力	共同溝設計指針		共同溝設計指針					
液状化の判定 (周辺地盤)	道示耐震設計編 $F_{11} \le 1.0$ レベル1地震動 $K_{hc} = 0.15C_z$	道示耐震設計編 $FL2 \le 1.0$ $Vベル2$ 地震動 I 種) $K_{hc} = 0.8C_z$ II 種) $K_{hc} = 0.7C_z$ III 種) $K_{hc} = 0.6C_z$	既存資料の土質や地 形、粒度条件から判 定(土質、地形、粒径) または $F_{L1} \le 1.0$ レベル 1 地震動	_				
液状化の判定(埋戻し土)	①地下水位が高い ②管きょの土被りが2m以上で地下水位以下 ③周辺地盤がN値≦15の砂層、又はN値≦7の軟弱粘性土 以上の3条件すべてに該当する場合→液状化の被害の可能性がある							
液状化対策 (周辺地盤)	液状化判定で周辺地盤が液状化の可能性がある場合は、レベル1地震動に対して液状化対策を検討する。 レベル2地震動に対しては、必要に応じて地盤改良等の対策を行う。							
液状化対策 (埋戻し地盤)	液状化判定で埋戻し地盤が液状化の可能性がある場合は、液状化対策を検討する。 埋め戻し土の液状化が懸念される場合は、浮き上がりの照査は行わず、原則として液 状化対策を行う。対策には以下の方法がある。 ①埋戻し土の締固め ②砕石等による埋戻し ③埋戻し土の固化							

(道示:道路橋示方書)

津波や大震動による被害が大きく液状 化は中心の問題にならないが、遠く離 れた場所における管路の液状化による 被害は大きい。

下水道管路の耐震設計は、日本下水 道協会による「下水道施設の耐震対策 指針と解説」2006年版³⁾ によること となっている。同指針では、道路橋示 方書にならって設計地震動をレベル1 とレベル2に分けて、対象とする管路 を「重要な管路」と、「その他の管路」 に分けている。地盤の液状化問題は、 開削施工の場合の周辺地盤の場合と、 埋戻し土の場合に分けて考える。液状 化判定は、周辺地盤に関しては重要な 幹線とその他の管路で基準を変えてい るが、埋戻し地盤に関しては基準を変 えていない。

表-2に、下水道管路施設に関する 指針の耐震の考え方をまとめた。