地下鉄コンコース連絡通路築造における 問題点と解決策

1 はじめに

当該工事はJR札幌駅南口から徒歩 5分の位置に新築される日通札幌ビル に、地下鉄コンコースへアクセスする 地下通路を構築する工事である。当初 計画では開削施工による通路の構築を 計画していたが、地下鉄コンコースは オフィスビル等に囲まれたバス停を付 帯する4車線道路の地下にあり、NTT 配管、電力管、ガス配管、上水道配管 および熱供給公社の配管などの重要な 占有物が埋設されていること、道路上 での作業制限があること、建築床付け 面が地下18.0mの大土被りでの接続 であることなどの問題を解決するた め、開削を行わずに鋼管ルーフによる 地下空間を構築できるパイプルーフエ 法(PR工法)が採用された。

工事において発生した問題点と解決 策について報告すると共に、今後の課 題について提起する。

2 工事概要

工 事 名:日通札幌ビル(仮称)新築工 事並びに機械式立体駐車場

設備工事の内(PR築造工)

工事場所:札幌市中央区 全体工期:2010年6月

PR工期:2010年10月1日

~2011年10月

~12月25日 ~12月25日

施 主:日本通運㈱

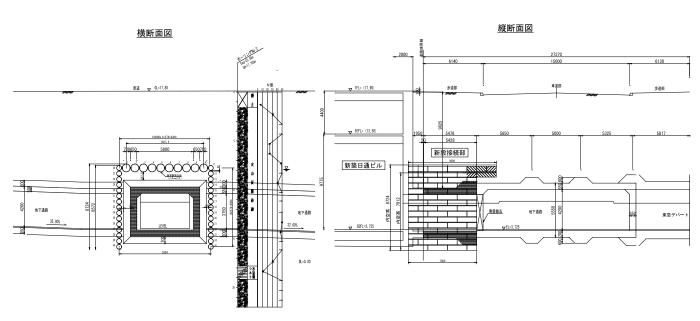


図-1 施工断面図

設計監理:日通不動産・三菱地所設計 共同企業体

施 工 者:大林組・岩田地崎・日通商 事共同企業体

P R 施工: 大林道路(株)北海道支店

3 工事内容

エ 法:パイプルーフ工法 門型 (SH工法ボーリング方式:二重ケーシング式)

内 容:水平部 鋼管 ϕ 800mm (STK-400·t = 9.5mm) 9.0m×10本=90.0m 垂直部 鋼管 ϕ 500mm (STK-400·t = 7.9mm) 9.0m×4本=36.0m 7.0m×26本=182.0m 中込注入 86.0m³ 鋼製架台 15.0ton

使用機械:水平部 SHM-800型 2台 垂直部 SHM-400型 2台

4 施工前の検討事項

4.1 施工条件による問題点

施工条件として示された調査ボーリ

ングデータおよび建築設計図書(計画 図面)の照査結果から、以下の問題点 について検討を行った。

- ① φ300mm程度の転石混りの砂利層 が連続していること
- ②地下水位はGL 8.5mにあり、地 下通路床付け箇所のGL - 18.0mま でには10.0mの水頭差があること
- ③地下鉄コンコース建設時の山留め材 (H=300) が残置されている可能性が高いこと
- ④工期が短く、昼夜間連続施工で行う ため騒音を抑制すること
- ⑤建築計画により隣地境界が近く、施 エスペースが限られていること
- ⑥建築工事の掘削深さに合わせた支保 工が必要であり、分割施工であること
- ⑦支保工部材(火打ち、切梁り)があり、 大型機材の搬出入ができないこと

4.2 工法選択と条件対策

パイプルーフ工法に用いる幾つかの 推進工法から転石混りの土質条件に絞 り、条件による「工法選択表」(表-1) により検討を行い、SH工法が「工法 選択表」記載事項の他に当該工事に適 した以下の特長があることから選択、 採用に至った。

- ①開放型ビットの採用により、転石や 既設山留め材(H=300)を確認し つつ推進が可能であること
- ②反力を底版から取るため、推進距離 が短く推進機設置替えが多い垂直部 の施工に適していること
- ③ビットの交換性に優れ、交換ビット が他工法より安価なこと
- ④垂直部の狭隘な箇所での施工用に、 軽量かつコンパクトなSH-46型、 SHM-400型があること

①を可能にするため止水効果のある 取込制御方式は採用しないことから、 10.0mある水頭差の水圧が問題となっ たが、パイプルーフおよび既存の地下 鉄コンコース周囲は薬液注入による止 水対策を行うことで解決した。

また、地下躯体構造物をドライワークで施工するために採用した止水性の高いPIP工法による山留め工法と底版薬液注入による止水により、発進部での作業空間が確保された。

パイプルーフにSH工法を採用する にあたっては、土圧、水圧等の現場条 件をもとにパイプルーフ工法および支 保工の耐力計算、強度計算を実施し、 確認を行った。

	SH工法		A工法		B工法		C工法	
方式	ボーリング方式		ボーリング方式		オーガ方式		オーガ方式	
対象土質	転石		転石		転石		転石	
使用鋼管(φ・mm)	400~1,000		200~1,000		200~1,200		200~800	
方向修正	有り	0	有り	0	有り	0	無し	×
止水性	制御方式有り	Δ	無し	0	有り	0	無し	×
掘削ビット	特殊ビット・トリコンビット		メタルクラウン		ダウンザホール		ハンマビット	
ビット交換性	有り	0	無し	×	有り	0	有り	0
騒音(音源)	小さい ○ (発電機)		小さい ○ (発電機)		大きい × (ハンマ)		大きい × (ハンマ)	
施工スペース(φ・mm)	2,000	0	2,000	0	3,000	Δ	2,000	×
施工実績	有り	0	少ない	Δ	多い	0	有り	0
判定	0		0		Δ		×	