留一生型推進

鉄道を横断した後も長距離推進

1 はじめに

都市を中心とする生活圏には、上下水道、電力、ガス、通信などのライフラインが無数にあり、その多くは地中に管きょとして埋設されている。これらを非開削で敷設する代表的な工法として推進工法は重要な役割を果たしている。推進工法はもが国のインフラ整備に欠かせない技術の一つとして進歩発展を遂げてきた。わが国では1948年に軌道下を内径600mmの鋳鉄管をさや管として施工したのが始まりで、今日に至るまで数多くの推進工法が誕

生し、十数年前までは不可能と考えられていた急曲線や長距離施工も今や珍しいことではない。しかしながら多くの課題を克服してきた今日においても、ますます厳しい施工条件を強いられる難工事が多々あることも事実である。

特に私たちが日常利用する公共交通 機関である鉄道の横断や近接する推進 工事においては、軌道沈下などの影響 を及ぼすことは決して許されず、施工 時間帯の制約を受けながら非常に難易 度の高い施工管理が求められている。 また、長距離推進においては現在の施 工技術はかなり向上してきたとはい え、好条件下でも約1,000mが限界と なっている。

このような背景で二重管推進工法は ①鉄道横断と②長距離推進をコンセプトとして開発された。

2 鉄道横断

推進工法は、現位置で覆工(セグメント)を組立てながら掘進機だけが前進していくシールド工法と違って、管材を常に発進立坑側から投入して到達立坑側に推進していくという特長から、地中では常に推進管が動いている

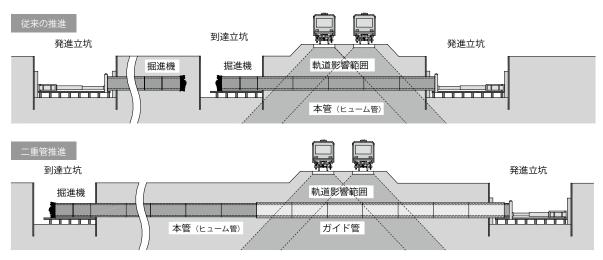


図-1 二重管推進工法による軌道下横断推進工の利点

状態にある。これが、鉄道など重要構造物の横断にとって最も課題となるところである。そのため従来、鉄道横断部の推進工事は線路下を推進管が動く期間を最短にしようと、線路の両脇に立坑を設置し、横断距離を最小として短期間で工事が完了するように計画されてきた。元来、推進工法は数百mを施工する能力があるのに、鉄道横断部では十数mが一工区といったスパン割となり不経済となっている。

しかし、二重管推進工法は敷設する 推進管の外側にガイド管を設けて二重 管構造で鉄道横断部の推進を行い、こ の区間を通過した後、直ちにガイド管 を裏込注入して防護管とし、その後の 推進は防護管の中を推進管だけが周辺 地盤へ影響を与えることなく安心して 推進することができるので、鉄道脇に 到達立坑を設置することなく、必要な 距離を推進して目的の位置に到達する ことができる。これにより、鉄道横断 部を含む長距離の推進が安全に施工で き、短いスパン割の改善と立坑数の削 減により経済性に貢献できる。

到達立坑の削減の効果は、単に立坑一基分の工事費の削減に留まらない。従来のスパン割では、線路横断部の管路工事は短期間で終了するが、その先の管路工事のために、線路脇の立坑は長期に亘って開口となった状況が続く。線路がその土留の影響範囲に入ることも珍しくなく、管路工事の期間中、長期に亘って線路の管理が必要となる。この煩わしさの解消にも一役買うことができる。

3 長距離推進

推進工法は、先導体の掘進機で地山を掘削し、後続の推進管にて推進力を 伝達して前進する工法であり、到達するまで管全体が移動する工法である。 そのため、推進中は推進管外周面を 潤滑層として保持しなければならず、 長距離化に伴う時間経過に対しては特 に留意して、掘削外径を大きくしたり 継続的な滑材注入を行ったり中押装置 を導入することによって対処している のが現状である。

しかし、土質の変化や地下水の変動などの原因で推進管外周の状態を均一な潤滑層として長期間保持することは困難であり、推進工法の長距離化は理論(推進力計算)上では半無限に可能であっても実施工的には1,000m程度が限界と考えられてきた。

また、推進工法の唯一の弱点とも言える管全体の移動による周辺地盤への影響懸念については、自動滑材注入システムなどの孔壁保持対策によらなければならず、オーバカットの必要性と相反して根本的な対策には到っていない現状である。

そこで、従来の推進工法では困難と 考えられる1スパン1,000mを遥かに 超える長距離施工を可能にするため、 到達するまで管全体が移動するという 概念を抜け出したのが二重管推進工法 である。

発進立坑から推進抵抗が厳しくなる 路線途中までを二重管構造で推進し、 ガイド管外周を裏込注入して地山と固 定した後、ガイド管をさや管として到 達立坑までの残りの推進を行う。ガイド管内の推進抵抗はガイド管と推進管の間の滑材の働きにより非常に小さくなるため、さらにその先の推進を続けることができるのである。

4

本工法の適用範囲

本工法は密閉型の泥水式推進工法、 土圧式推進工法、泥濃式推進工法のいずれにも適用可能で、掘削機構、推 進機構など、すべて従来のこの3工 法と特に変わるところはない。また、 適用する管径は、泥水式推進工法お よび土圧式推進工法では呼び径800 ~3000、泥濃式推進工法では呼び径800 800~2200である。

5

二重管の構造

本工法で使用する管材は、ガイド管は基本的に鋼管を使用し、推進管は一般的なヒューム管を使用する。ガイド管と推進管は2箇所の固定金具にて固定され二重管構造となっている。この固定金具は裏込注入用の注入孔の機能を有しており、裏込注入後はねじ式となった固定金具を外すことでガイド管の中を推進管がスムーズに動くことができる構造である(図-2、写真-1~4)。

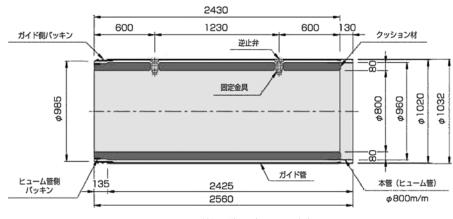


図-2 二重管の構造(φ 800 の例)