爾再構築の切り札

改築推進の壁を次々と克服する リバースエースシステム

一どんなに傷んだ管も非開削で治します一

日野 英則 エースモール工法協会

1 リバースエースシステムの 実績と適用

1.1 現在までの実績

改築推進工法リバースエースシステムは、平成18年度に導入し同23年度末までに9工事、13区間、推進延長は累計873mの実績となっている。

表-1にこれまでの実績を示すが、 様々な既設管種、劣化・損傷状態の改 築更新を実施した。

同24年2月には、既設管が推進用 鉄筋コンクリート管(鋼製カラー継手) の改築推進工事を完了し、新たに適用 可能な領域を拡大した。

1.2 リバースエースシステムの 分類と適用

リバースエースシステムは、(公社)日本推進技術協会による改築推進工法の分類では、回転破砕推進方式(A)に分類される。

回転破砕推進方式(A)は、改築推 進前に既設管内をモルタル等で充填し た後に推進し、既設管を破砕除去し敷 設替えする方式である。 リバースエースシステムの掘進機は、小口径管推進工法エースモールDL工法(泥土圧方式一工程式(圧送排土))と同方式であり、改築推進専用の特殊カッタヘッド(A型・B型)を装着している。

以下のような適用が可能である。

- ①老朽化、損傷した管の敷設替えが可能である。
- ②管の流下能力を向上するための既設 管の増径が可能である(縮径も可)。
- ②既設管の上下方向のたるみ、逆勾配、

竣工年月	推進延長 (m)	施工場所	新設管		既設管			か エアく	土被り	m\A
			管種	呼び径	管種	呼び径	基礎等	線形	(m)	用途
2007年3月	39.3	東京都	推進用鉄筋コンクリート管	400	開削用鉄筋コンクリート管	250	枕木基礎	直線	4.9	下水道
2007年3月	33.5	東京都	推進用鉄筋コンクリート管	400	開削用鉄筋コンクリート管	250	枕木基礎、内面被覆材	直線	3.6	下水道
2007年12月	39.1	茨城県	推進用鉄筋コンクリート管	450	開削用ポリエチレン管	300	なし	直線	3.5	下水道
2008年1月	64.3	茨城県	推進用鋼管	550	開削用ポリエチレン管	300	なし	直線	4.6	下水道
2008年2月	144.9	茨城県	推進用鉄筋コンクリート管	450	開削用ポリエチレン管	300	なし	R = 250m	4.8	下水道
2008年3月	162.2	茨城県	推進用鉄筋コンクリート管	400	開削用ポリエチレン管	200	なし	R = 110m	4.5	下水道
2010年6月	88.9	山口県	推進用鉄筋コンクリート管	350	推進用鉄筋コンクリート管(SUSカラー)	350	なし	直線	3.3	下水道
2011年5月	14.1	愛媛県	推進用鉄筋コンクリート管	600	陶管	450	粘土巻	直線	3.5	水路
2011年10月	35.0	茨城県	推進用鉄筋コンクリート管	300	開削用鉄筋コンクリート管	300	なし	直線	3.8	下水道
2011年12月	102.5	茨城県	推進用鉄筋コンクリート管	300	開削用鉄筋コンクリート管	300	なし	直線	4.1	下水道
2012年1月	106.0	茨城県	推進用鉄筋コンクリート管	300	開削用鉄筋コンクリート管	300	なし	R = 150m	4.5	下水道
2012年2月	34.3	茨城県	推進用鉄筋コンクリート管	300	開削用鉄筋コンクリート管	300	コンクリート	直線	7.0	下水道
2012年2月	8.3	東京都	推進用鉄筋コンクリート管	300	推進用鉄筋コンクリート管(鋼製カラー)	350	なし	直線	8.0	下水道

累計 872.4

マンホール部での逆段差、破損、継 手ズレ、浸入水、樹木根侵入等が発 生した状態も修復することができる。

- ③排水計画の見直しによる勾配変更、 ルート変更等を目的とした改築推進 が可能である。
- ④既設管の撤去と新管敷設を一工程の 推進で行い、鉄筋コンクリート管、 塩化ビニル管、ポリエチレン管、陶 管、石綿セメント管等の幅広い管種 の改築推進が可能である。

図-1にリバースエースシステムの特長を活かした適用例を、表-2にはリバースエースシステムの標準適用範囲を示す。

2 リバースエースシステムの特長

2.1 既設管の破砕と回収

推進方式は泥土圧方式であり、泥土 圧により切羽の安定を図りながら既設 管を破砕・回収する。

既設管の破砕をあたかも推進工法の 地山掘削と同様に行うため、事前に既 設管内をモルタル等により充填する。

改築推進時は、周辺地盤の掘削、既 設管や基礎材の破砕を同時に行い、先 導体前面から噴出する添加材と破砕 片、掘削土を混合攪拌して泥土化し、 泥土を排出しながら推進する。

2.2 特殊カッタヘッドの 破砕メカニズム

リバースエースシステムは、鉄筋コンクリート管 (開削用管・推進用管)を対象とした改築推進では、特殊カッタヘッドA型を開発し装備している。

写真-1に掘進機概観、写真-2に 特殊カッタヘッドA型カッタ形状の詳 細を示す。

鉄筋コンクリート管を破砕する際は、特殊カッタヘッドの回転力により、 管のコンクリートを微細に破砕し、同 時にギア型カッタにより管の断面を凹 ①地盤の沈下等により既設管に大きな中だるみが発生した場合

②再構築計画等により縦断線形が逆勾配となる場合

図-1 特長を活かした適用例

表-2 リバースエースシステムの標準適用範囲

			適用領域					
既設管		管種	鉄筋コンクリート管(開削用、推進用(SUSカラー・鋼製カラー))・レジンコンクリート管(開削用、推進用(SUSカラー))・塩化ビニル管(開削用、推進用)・開削用陶管・ポリエチレン管					
	本管	呼び径	~700					
		基礎	砂・砕石・枕木・コンクリート					
		状態	たるみ、段差、逆勾配、破損、継手ズレ、浸入水等があっても適用可能 マンホール部の破砕推進も可能(マンホール内はモルタル充填等が必要					
	2		推進用鉄筋コンクリート管、推進用レジンコンクリート管、鋼管					
新管		呼び径	250~700 (推進用鉄筋コンクリート管の場合) 既設管径によらず任意に増径が可能(縮径も可)					
施工長			最大150m程度まで(推進用鉄筋コンクリート管:最大100m程度まで)					
土被り			通常の推進(エースモールDL工法)と同様 (仮排水による制限がある場合はそれによる)					
推進曲線半径			最小R=100m程度まで					
启	引辺地盤の	の条件	土質条件、地下水条件等は通常の推進(エースモールDL工法)と同様					

写真-1 リバースエース掘進機外観

写真-2 カッタヘッドA型