麗測量技術の挑戦

考案されて15年。進化し続ける トータルステーション方式

世中 政芳 (株)ソーキ 開発部長

1 はじめに

大中口径推進工事の測量システムとして長距離・曲線施工では、トータルステーション方式が確固たる位置を占めている。この方式が考案されてから約15年が経過しており、ここではこの測量システムの概要を紹介し、システムの変遷を振り返ると同時に、使用限界、システムの特長、課題について述べる。また時代やニーズの変化がもたらすシステムへの影響にも触れる。

2 推進測量の特長

- ①推進管そのものが移動するので管内 に基準点を設けることができない。
- ②立坑内にある短いバック点を基準とした解放トラバー測量である。
- ③非常に狭い空間および測量環境が良くない。

3 トータルステーション方式の システム構成

3.1 概要

トータルステーションによる推進自動測量システムは、移動する管体内の 見通し可能範囲をつなぐ位置に自動追

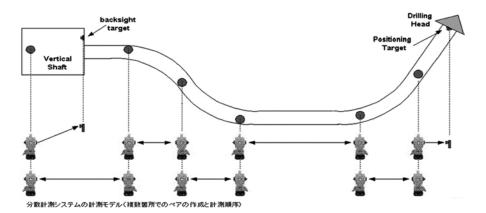


図-1 システム概念図およびユニット構成

尾式トータルステーションを配置し、 互いの位置を自動計測して、それらの データをパソコンで演算することで機 械位置の座標(xyz)を正確に、かつ 短時間で算出する。さらに計算された 掘進機位置と、計画位置とのズレをパ ソコン上に表示することによって、正 確な掘進管理を行うシステムである。 トータルステーションと自動整準台 という構成上、高さの制約があり φ 700mm以上での適用となる。特長と してはトータルステーションという非 常に精度の高い測量機をベースにして いるため、測量結果が信頼できる。

3.2 機器構成

本システムは、立坑内トータルス

テーション1個所、管内の中間点トータルステーション数個所、掘進機に取り付けた視準ターゲット $1\sim2$ 個所、それぞれを結ぶ通信コントロールシステムおよび演算部より構成されている(表-1)。

表一1 機器構成

	. 120 11 11 1720			
	制御室	立坑内	中間点	掘進機
S600		1	数台	
自動整準台			数台	
SB-1		1	数台	1
MB-2	1			
コンピュータ	1			
バック点RMT		1		
マシンRMT				1~2
架台		1	数台	
通信ケーブル	3Pツイストペア(20m/本)			
電源		100V		

写真一1 設置状況

写真一2 制御ユニット

写真一3 自動整準台

3.3 主要機器の働き

(1) RMT内蔵型自動追尾式トータル ステーション

トータルステーションとは、トラン シット、光波距離計が同軸構造に組み 込まれた測量機で、目標点に設置した 反射鏡までの距離、水平角度、垂直角 度の同時測定を行う事ができる。この トータルステーションに、ターゲット (プリズム等)を自動的に追尾する自 動追尾装置を搭載したものが、自動追 尾式トータルステーションである。本 システムでは、ジオジメーター・シス テム600(以下S600)を使用している。 推進測量に使用しているS600は、専 用に開発したもので、本体内に視準用 の赤外線発光部 (RMT) と距離計測 用の反射プリズムを内蔵しており、互 いにサーチ、自動視準、測距測角を行 うことで位置の計測を行う。

自動追尾は、RMTからでる赤外線を 測量機本体のトラッカーでキャッチす ることで行う。トラッカーが赤外線を キャッチすると、その中心を自動的に 視準する。(オートロック機構)。また 何らかの遮蔽物により遮断された場合 も、赤外線範囲内にあればターゲット を再び捉えることができる(**写真-1**)。

(2) RMTおよび測距用プリズム

S600用のターゲットで、これを視準して測量を行う。S600を誘導するための赤外線発光器と、測距・測角用

のプリズムで構成されており用途によ り次の種類がある。

①外部RMTプリズム

- a)後視用RMTプリズム(立坑内) 立坑内基準点のバック点となるもの で、測量の基準となる。
- b) 視準用RMTプリズム(掘進機用) 掘進機に取り付けたターゲットで、 これを視準して掘進機位置を計測す る。この誤視準を防ぐため、RMT電 源の入り切りをパソコンでコントロー ルする。また、掘進機にRMTターゲッ トを2箇所設置することで方位角の計 測も可能である。

②S600内蔵RMTプリズム

推進測量システム専用に開発した もので、S600本体トラッカーの下部 に誘導用の赤外線発光部(RMT)を、 また接眼レンズ部にプリズムを内蔵し ている。

(3) 設置架台

S600および視準用ターゲットの架台で、次のようなものがある。

①立坑内S600用架台

立坑内固定基準点用S600用の架台で、測量の基準となるため、振動等に対しても揺れることないような強固なものが必要である。

②中間 S600 用架台

中間基準点のS600用の架台で、移動するヒューム管に設置するので、小型、軽量で移動、取り外しが容易に出

来ること、ねじれ等が生じない強度も 必要である。

③視準ターゲット用架台

掘進機に設置するRMTプリズム用の架台。

(4) コントロールユニットおよび ケーブル

S600の動作を制御管理するとともに、機器間の通信およびそれの制御を行う。またS600の状況をホストコンピューターへ送る。

- ①メインコントロールボックス (MB-2) ホストコンピューターに接続する制 御ユニット (**写真-2**)。
- ②ステーションコントロールボックス (SB-1)

S600に接続する制御ユニットで、S600の動作および計測データの通信を制御する。

(5) 自動整準台

掘進中に生じる傾きを自動補正する。 ± 4 度までの傾きの自動補正が可能である(写真-3)。

(6) ホストコンピュータ・

処理ソフトウェア

推進管内のSB-1への計測指示およびコントロールおこない、そこで計測されたデータで、機械位置の座標(XYZ)を計算し、画面表示を行う(図-2)。