盤性化した推進技術

小口径管推進工法の挑戦

たぐち よしまき 田口 由明 ㈱エイト日本技術開発 保全・耐震・防災事業部 総合防災・保全分野分野統括 (本誌編集委員)

1 はじめに

本誌では、直近3年の正月号にて、 推進技術関係者の"夢"と"希望"を 集結した"海外進出特集"を編集して います。わが国の推進技術は、下水道 管路を中心とする施工経験の蓄積か ら、適用可能な土質、推進延長、曲線 等の掘進・制御機能の信頼性、ならび に、そのオペレーション技術は高度な レベルにあり、また、周辺技術も併せ て向上しており、市場拡大が期待され る"水ビジネス"においても、世界の 冠たる技術分野として注目を集めるに 至っています。推進技術分野では、各 団体が東南アジア諸国を中心に技術研 修生の受入れ等も積極的に行ってお り、日本推進技術協会においても今年 5月、国際協力委員会を設置し、『チーム推進工法日本』が誕生しています。本稿では、このような動向の中から、「小口径管推進工法の高耐荷力方式」を中心に、代表的な工法の海外市場への挑戦を振り返り、海外におけるニーズと克服すべき課題について述べてみたいと思います。

2 海外での活躍事例

小口径管推進工法の海外進出の歴史 はまだ浅く、経験と実績が十分あると までは言えませんが、各工法とも日本 の技術が国際貢献を果たすという信念 のもと積極的な展開をはかっていま す。過去の本誌特集からの再掲となり ますが、いくつか代表的な事例を紹介 します。

2.1 アンクルモール工法1)

アンクルモール工法の海外進出は、30年余り前に始まり、最近ではアジアにおける急速な経済成長に伴い、地下水や地盤に対応し多様な機種を有するという特長を活かし、当該地域での納入等の実績を伸ばしています(表 -1)。工事の中には、河道内における立坑築造、約30mの大土被りなど、難条件のものもあったようです。

2.2 コブラエ法²⁾

コブラエ法の海外進出については、 韓国における2007年から2008年の

写真一1 コブラエ法発進立坑内(韓国百済)

表-1 アンクルモール工法の代表的な海外プロジェクト

国・地域	竣工	管径	土質	延長	スパン数
タイ	1996年	600~1800	バンコックレイ	約30km	約200
タイ	1998年	450~2200	バンコックレイ	約30km	約200
タイ	1999年	250~2400	バンコックレイ	約30km	約200
タイ	2001年	250~3000	バンコックレイ	約70km	約600
マレーシア	2004年	225~1800	砂、粘土、シルト、 砂礫、砂岩	約13km	109
シンガポール	2005年	300~3000	砂、粘土、シルト、 マリンクレー、砂岩	約60km	約350

プロジェクトが紹介されています。呼び径の $1\sim1.2$ 倍の玉石を破砕し推進が可能という理由で、呼び径300から500(4スパン)の採用事例があります(写真-1)。

2.3 エースモール工法³⁾

エースモール工法の海外進出は、1990年代に電気通信部門として、インドネシア、マレーシア、タイにおいて無排土圧入工法(PC10工法)を中心に展開していました。現在は、2ndステージとして台湾新北市を皮切りに、下水道事業において泥土圧工法(DL35工法)の実績を伸ばしつつあります(写真-2、3、表-2)。

エースモール工法の特長は、玉石、礫等を含む広範囲の地盤への対応性といえますが、事例の中にも長径900mm、礫率90%等の難条件の現場があり、実績の増長は複雑な台湾の地盤特性に適う施工技術であると評価された結果と推察されます。

写真-2 台湾に到着したエースモール

3

3 日本の技術への期待

日本の推進技術は、国内で培った経験と実績から各工法とも、土質、地下水、管種等の適用条件、機械仕様の精巧性、長距離や曲線造成を含む施工性、測量を含む運転管理技術、周面摩擦低減等の周辺技術等、総合的に高い水準にあり、アジア諸国をはじめ多くの視線を集めています。

また、諸外国と日本では、工法選定の考え方も異なるようです。日本においては「原則、開削工法」という概念に基づきますが、台湾などでは、「原則、非開削工法」という一面もあるようです。となれば、推進工法への期待は当然膨らみ、周辺技術も含む推進技術全体がそれに応え、採用国の事情を踏まえた「扱いやすさ」を伴う高度化を図らねばなりません。また、普及に向けた一層の取り組みも必要となり、オペレーター等の人材育成、技術基準

写真-3 元押装置の立坑搬入

表-2 台湾でのエースモールDL35-C工法の施工実績(2011.6~11)

スパン	推進延長 (m)	N値	玉石径(mm)	地下水位 (m)	施工日数(日)
No.1	34.3	6~7	なし	4	16
No.2	32.3	6~7	なし	4	10
No.3	28.8	6~50	300	4.4	15
No.4	28.9	7~50	200	4.4	22
No.5	16.7	6~50	150	4.5	9
No.6	48.4	6~50	150	4.5	10
No.7	33.1	6~50	100	4	12
No.8	39.9	6~50	100	4	11

(計262.4m)

類の整備、設備類の保守管理体制の充 実等を行うとともに、供用中も含む高 度な品質の維持、使用材料の国際基準 (ISO)適合性の確保、「日本の技術は 高価」というイメージの払拭なども重 要となります。

しかし、このような期待の高まり、 積極的な取り組みの一方には、海外市 場ならではの「リスク」も潜在します。

4

海外でのリスク

海外業務では、国内とは異なるルールや習慣等により生じるトラブル、リスクも抱えており、前述のような"おもて向き"の話しのみではありません。

技術者一人一人のモラルや技術力の問題からチームとしてのコミュニケーション、さらには、資金回収、責任分担、知的所有権、社会成熟度、法治制度等、企業や行政における問題点も少なくありません。また、万が一の事故

や瑕疵の問題も国内とは事情が異なります。これらの点については、派遣される責任技術者はもちろん、関係者が同様に承知している必要があります。

既報の台湾における2005年のプ ロジェクト紹介4)に基づき一例を紹 介します。ここでは、台湾の多様な 地質(礫・玉石~軟弱な沖積層)に おいて長距離推進や曲線推進に対応 可能な工法として、泥濃式推進工法 に期待が寄せられていること、また、 推進工法が基本工法として広く採用 されている一方で、その事前調査や 周辺技術については未熟なところも あることが述べられています。工事 におけるトラブル事例も、契約・取 引の問題以外に5点ほど示されてい ます。日本であれば、日常的に行わ れていることも、改めて相互認識す ることが重要と言えます。