解進化した推進技術

岩盤などの 高強度、高硬度への対応進化

(本誌編集委員)

1 はじめに

私は「ここまで進化した推進技術」 特集で、地山・地盤への挑戦と題して、 推進技術の進化と現状について述べて きた。

そして、克服されていない掘削困難 な地山として、次のようなものを取り 上げ、どのように進化・発展している かについて記述している。

- ①崩壊性の高い地山、巨石地盤
- ②岩盤地盤
- ③粘土、砂、礫、岩盤層が混在する複 合地盤
- ④土以外の地中物
- ⑤腐食土層などの軟弱土

3年目の今回は、この内の、高強度、 硬度の掘削技術が必要とされる、②岩 盤地盤、④土以外の地中物について、 推進業者、掘進機メーカ等の取り組み 例と著者の意見を述べながら、さらに 掘り下げて、今後の推進技術の発展性 について述べてみたい。

2 岩盤推進のための地質調査と 留意点

推進工事が対象とする地山は、まず 岩盤と土砂などの土質地盤に分けられ る。ここで岩盤とは、岩石の集合体が 連続して分布している地層である。層 や割れ目のないものを想像しがちであ るが、亀裂、層境や破砕帯などを包含 したものも岩盤と称している。特に日 本の岩盤は、プレート運動などの地殻 変動によって堆積した付加体の影響な どもあり、断層や亀裂が不規則に発達 していることが特長である。したがっ て、日本における岩盤推進については、 岩盤亀裂、層境や破砕帯に対しても十 分考慮した施工が求められる。

岩盤の掘削効率を左右する特性には、強度、硬度(鉱物構成)、割れ目の間隔と方向がある。強度についての尺度は、一軸圧縮強度、圧裂試験、点載荷試験など、硬度についての尺度については、岩石中の鉱物構成、モース硬度や石英含有率、割れ目の間隔と方向には、弾性波探査などの物理探査、ボーリング調査によるRQDや調査坑による目視調査が利用される。

表-1に代表的な岩石の硬さによる 区分¹⁾、表-2に主な火成岩の平均化 学組成²⁾を示す。岩盤分類について は、道路系と鉄道系、その他分野(電 力、水路トンネル、農水関係など)で 異なる岩盤分類が用いられているので 留意が必要となる。表-1で区分している軟質岩、中硬質岩、硬質岩の区別は、道路トンネルにおける地山分類で、新鮮な状態で、一軸圧縮強度が80N/mm²以上が硬質岩、20~80N/mm²が中硬質岩、20N/mm²未満が軟質岩である。また岩石中の鉱物構成では、ビット摩耗に大きく影響する石英(Si O₂)含有率に注目する必要があるが、表-2からは岩盤推進では花崗岩、流紋岩に留意する必要があることが分かる。

3 岩盤に適合する掘削方式

推進工法における代表的な岩盤に適合する掘削方式を表-3に示す³。この表は、月刊下水道で1994年8月号の特集「岩をも穿つ推進工法」で掲載されていた表を本誌Vol.24. No5(2010年5月号)で特集した「岩盤に挑む、推進技術」での推進業者、メーカ等の見解を元に加筆修正したものである。岩石、岩盤を掘削する掘削方式は、切削方式、圧砕方式、圧裂方式、打撃方式に分けられる。各々の掘削方式の掘進機写真例を写真-1~4に示す⁴。

この表の中では口径の大きさの相違 を区分けしていないが、TBMのよう

表一1 代表的な岩石の硬さによる区分

新第三紀の堆積岩 (新第三紀は2,500万年前~200万年前。500 万年前以前を中新世、以後を鮮新世という) 古第三紀の堆積岩	泥岩 頁岩 砂岩 礫岩 凝灰岩 火山礫凝灰岩 頁岩 砂岩	軟質岩 軟質岩~中硬質岩 土 砂~中硬質岩 軟質岩~中軟質岩 軟質岩~硬質岩 軟質岩~硬質岩 中硬質岩	(代表的な軟質岩) (グリーンタフ、大谷岩など)	
(古第三紀は7,000万年前~2,500万年前)	礫岩	中硬質岩~硬質岩		
中生代・古生代の堆積岩 (中生代は2億2,000万年前~7,000万年前。古 生代は6億年前~2億2,000万年前。秩父帯、 四万十帯は代表)	頁岩 粘板岩 千枚岩 砂岩 礫岩 チャート 石灰岩 凝灰石	中硬質岩 中硬質岩 中硬質岩~硬質岩 硬質岩 硬質岩 硬質岩 硬質岩 中硬質岩~硬質岩	(変成作用で石英が多いものは特に硬質) (緑色岩、シャールスタイン等)	
火山岩	溶岩 火山角礫岩 凝灰角礫岩 火山礫凝灰岩 凝灰岩 溶結凝灰岩	硬質岩 硬質岩 軟質岩~硬質岩 軟質岩~硬質岩 軟質岩~硬質岩 硬質岩	(岩質により、流紋岩、デイサイト、安山岩、玄武岩に区分される)	
貫入岩 (岩脈、岩板など)		硬質岩	(流紋岩、デイサイト、安山岩、玄武山、石英斑岩、 _岩、粗粒玄武岩など)	
深成岩		硬質岩	(花崗岩、花崗岩閃緑岩、閃緑岩、斑れい岩など)	
変成岩	結晶片岩 ホルンフェルス 片麻岩 蛇紋岩	中硬質岩~硬質岩 硬質岩 硬質岩 中硬質岩	(山岳地帯に存在)	

な大口径の掘進機と中小口径掘進機で は、岩盤に対する掘削方式の選定に相 違がある。大口径掘進機では、スペー スが確保できるためビットの交換が比 較的容易であり、ローラカッタも外径 が大きいものを装着できることから、 硬質岩に対しては、圧裂方式(ディス クカッタ)を使用することが多い。し かし、中小口径掘進機では、圧砕方式 (ボタンビットなどを埋め込んだロー ラカッタなど)の採用が主流である。 中小口径では取付けられるローラカッ タの大きさに限度があることや構造制 限から片軸型カッタで軸強度が低い カッタが取付けられるため、カッタに かけられる推進力が小さくなる。その 少ない推進力で効果的に掘削するため には、点で圧砕できるボタンビットが 適しているためであると考えられ、ト リコンビットのような形式のビット配

表-2 主な火成岩の平均化学組成(wt%)(R.A.Daly,1933)

	花崗岩	閃緑岩	流紋岩	安山岩	玄武岩
Si O ₂	70.18	56.77	72.80	59.59	49.06
Ti O ₂	0.39	0.84	0.33	0.77	1.36
Al ₂ O ₃	14.47	16.67	13.49	17.31	15.70
Fe ₂ O ₃	1.57	3.16	1.45	3.33	5.38
Fe O	1.78	4.40	0.88	3.13	6.37
Mn O	0.12	0.13	0.08	0.18	0.31
Mg O	0.88	4.17	0.38	2.75	6.17
Ca O	1.99	6.74	1.20	5.80	8.95
Na ₂ O	3.48	3.39	3.38	3.58	3.11
K ₂ O	4.11	2.12	4.46	2.04	1.52
H ₂ O	0.84	1.36	1.47	1.26	1.62
$P_2 O_5$	0.19	0.25	0.08	0.26	0.45
合計	100.00	100.00	100.00	100.00	100.00

置を採用しているものが多い。

圧砕方式を採用するのは、ビット摩 耗の激しい岩盤では耐用延長を長くす るためでもある。ローラカッタの損耗 は、ローラビットの母材の摩耗による ボタンチップの抜けだし現象によるも

のがほとんどであることから、近年で は、浸炭焼入れ処理を施したビットが 使用されることでさらに耐用延長を伸 ばすことが可能となっている。またボ タンチップ等のチップが飛び出した ローラカッタの損耗は、ボタンの配列