館性化した推進技術

新たな息吹を見つけたか 推進測量技術の展開

いなば とまま **稲葉 宮男** (株ソーキ 顧問 (本誌編集委員)

1 はじめに

推進工事に自動測量システムが登場 して約15年が経過した。この自動測 量システムが測量精度の向上・測量時 間の短縮に貢献し、また作業員の苦渋 作業からの解放を実現した。この15 年間、測量システムには様々な改良が 加えられまた新たな開発が進み、大中 口径管のトータルステーションタイプ は安定した実績を重ねるとともに、小 口径管での曲線施工も普通の時代と なっている。近年は特に小口径管の自 動測量技術に関していろんなアイデア が実現され、多様化とともに「測量技 術としての独立」の方向性を模索した り、他分野への応用等様々な展開を見 せている。ここでは推進自動測量の現 在の状況を報告すると共に、新たな測 量方法の試みを報告する。

2 大中口径管と小口径管の測量技術

推進工事は、φ800mm以上の大中口径管とそれ以下の小口径管に分かれる。そしてそれぞれに要求される技術内容が異なり、測量システムも全く違ったものとなっている。大中口径は

管内へ人が入ることが可能であるが、 小口径は管内へ人が入ることができない。それぞれに適した測量システムが 開発されている。

3 測量システムの分類

表-1に測量システムの分類を示す。

4 測量システムの現状

4.1 直線施工時のレーザ光線方法

直線で距離が短い場合の測量システムは、平面はレーザ光線、高さは水レ

ベルを採用するのが一般的である。これは大中口径管、小口径管ともに広く 使用されている。

4.2 大中口径管の自動測量

(1) トータルステーション方式

φ800mm以上の大中口径管では自動追尾トータルステーション方式が採用される。これを自動整準台の上に配置し、通信システムを通じて管内の測量機を坑口から自動制御する方法である。センサとして用いるトータルステーションは通常の測量に用いるものであり、測量機メーカの工場生産品であり、品質も安定し、測量の精度も保

表一1 推進測量システムの分類

用途	管径	平面位置	高さ	採用工法
直線	すべて	レーザ光線方式	液圧差法	すべて
曲線	大中口径管	トータルステーション方式	同左	すべて
		ジャイロ方式	液圧差法	すべて
	小口径管	地上電磁波計測方式	液圧差法	アルティミット工法 エースモール その他
		レーザ光線連結方式	液圧差法	エースモール
		走行台車方式	液圧差法	ミクロ工法 ベル工法
		カメラ方式	液圧差法	カーブモール ジャット工法 ジェッピー
		ジャイロ方式		Sリード
その他	補助工法	地中電磁波計測方式	_	ネオジャスト

証が得られる。測量システムとしては、工法に依存しない独立したものであり、機器の設置空間が確保できれば工法の制限は受けない(**写真-1**)。

(2) ジャイロ方式

掘進機に精度の良いジャイロを取付け、ジャッキストロークによる進行と ジャイロの角度変化を積分することで 位置管理を行なう方法である。自動測量としては相対測量であり定期的に掘進機の絶対値を計測する必要がある(写真-2)。

4.3 小口径管の自動測量

小口径の測量システムは、非常に狭い空間の中に機器を納める必要がある。そのため測量システムも工法と一体で考える場合が多い。

(1) 地上電磁波計測方式

地中の掘進機等に設置された発生装置からの電磁波を地上で受信し、地下の掘進機の位置を把握するものである。工法に対する自由度は広く様々な場面で採用されている。また発生装置の取付け位置、個数等に改良を加え精度向上も進んでいる。欠点としては、地中に障害物がある場合や、施工深度が深い場合に測定ができなくなったり精度が悪くなったりする。また交通量の多い道路や、河川での計測は難しい。高さの管理は液圧差法を用いる(写真 -3、図-1)。

(2) レーザ光線連結方式

発進立坑から発信したレーザ光を掘進管内に配置した複数の中間ユニットにより順次屈曲させ、掘進機に取付けられているターゲットを検出し水平位置を計測する方式である。高さの管理は液圧差法を用いる(図-2)。

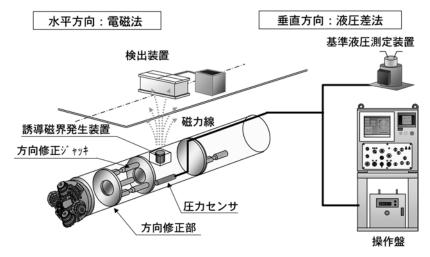


図-1 電磁法と液圧差法の原理

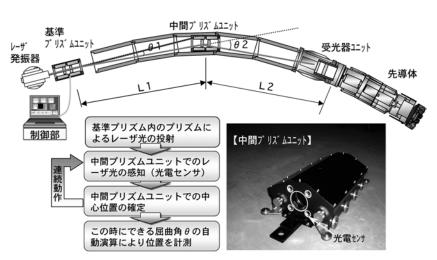
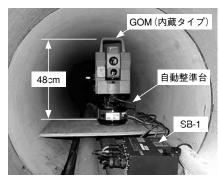



図-2 エースモール (プリズム)

写真一1 管内設置状況

写真-2 ジャイロ装置 (出典:機動建設工業HP)

写真-3 モールキャッチャー測定器