推進工法とシールド工法の利点を融合して 地中送電管路を構築

FS(複合システム)推進工法について

和伸 湯本 栗原工業(株) 工務本部副本部長 兼工務部長

はじめに

当社は、創業90年を超える電気工 事会社で、その中の事業部にて、主に 関西の地中送電管路工事を施工してお ります。下水道工事とは分野が違いま すが、管路工事において、推進工事も 施工しております。ただ、推進の施工 目的としましては、特高ケーブルを敷 設することでありますが、大半の設備 として推進管内に特高ケーブル用埋設 管を敷設してからケーブル敷設とな り、埋設管敷設後は、推進管内をモル タル等で充填します。

今回紹介する工事内容は、推進工事 における複合推進で、当社と協力会社 で開発したFS(複合システム)推進 工法について説明します。

開発の経緯

平成5年5月に着工した地中送電管 路は、京都の現場で、推進工事による 管路敷設工事でした。

(当初設計)

土質条件:砂礫土

最大礫径300mm 礫率76%

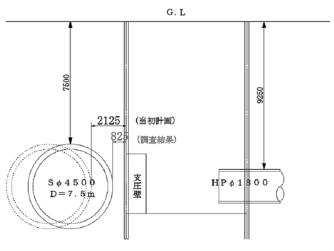


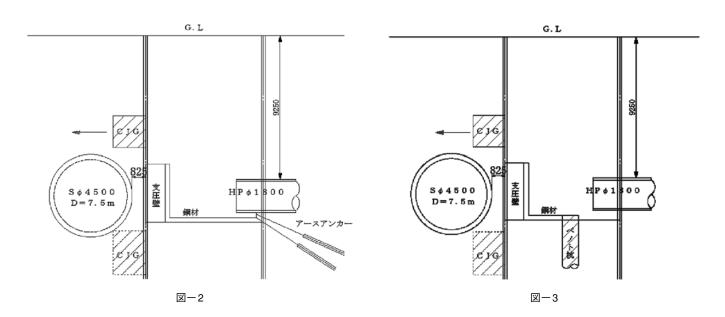
図-1

地下水位: GL-2.0m 推 進 管: HP φ 1.800mm

推進距離: 445m

推進土被り:平均9.2m

曲線半径:R=150~200m


平面3箇所

推進工法:泥土圧式 中押箇所:8箇所設置

施工計画書を作成し現場で詳細調査 を行った結果、発進立坑箇所で問題が 発生しました。発進立坑の元押反力側 に φ 4,500mm の下水管が埋設されて おり、土留壁との離隔が当初の計画で は2.125mでしたが、探査ボーリング による調査の結果、0.825mと近接し ていることが確認されました。このこ とより、掘削・推進工事において下水 管(シールド)への影響防止の対策検 討を行うことになりました。

2.1 FEM解析

下水シールド側の立坑上下部にCIG による地盤改良部を造成して推進の ジャッキ推進力の受皿とし、下水シー ルドのセグメントが直接推進力の影響 を受けないように計画して、FEM解 析を実施したところ、推進力220tの 場合で影響がもっとも小さく、変位量

は最大で1.8mmとなりました。しかし、 変位量が1.8mmでセグメントに影響 (ヘアークラック)が発生するかは、 セグメントがどのような外力を受け、 どのような変形をしているかは推定が 難しいため、解析は不可能と言えま す。よって、ジャッキ推進力を後方支 圧部に伝達させない工法が必要となり ます。ただし、下水シールド上部分に ついては、CJGによる地盤改良部を造 成することにより、推進力を下水シー ルドのセグメント後部に伝達させるこ とができるため、影響は無いと考えら れます。また、FEM解析による最適 推進力が220tと小さいものであるこ とより、下部分の推進力を前方から反 力として取る工法を検討しました。

2.2 前方反力工法の検討

前方より反力を取る工法として、次 の二工法が考えられました。

- (1) アースアンカによる工法
- (2) ベノト杭による工法

(1) アースアンカによる工法

- ・アースアンカを前方斜めに設置して 反力とする方法である。
- ・ここで問題となるのは、地下水位以下でのアンカ削孔となり、削孔部分よりの湧水を防止できないことから

今回は採用できませんでした。

(2) ベノト杭による工法

- ・ベノト杭を発進立坑内に設置して支 圧壁と連結し反力とする方法である。
- ・反力耐力は、別途計算によりベノト 杭1本当たり60tあり、4本設置に より240t確保できる。また、上部 支圧耐力を考慮すると総耐力320t となり、FEM解析による220tを上 回り、下水に対する影響もなく推進 工事できる。

よって、ベノト杭による工法を採用 しました。

2.3 推進の検討

(平成5年当時の推進力計算式による)

(1) 元押推進距離の検討

【条件】

後方支圧壁耐荷力

R = 320t

初期抵抗

Fo = 142.6tf (別途計算)

1m当りの必要推進力

Fm = 12.173tf (別途計算)

滑材による管周摩擦低減係数

 $\beta = 0.95$

元押推進距離

 $Lm = (R-F_0) / (F_m * \beta)$

= 15.340 m

従って、5.34m(ヒューム管)+ 10.00m(掘進機・後続管)まで元押 ジャッキで推進できる。

(2) 中押設備の検討

①1段目中押設置距離(L1)

1段目中押設置箇所迄のHP本数

N1

元押推進距離

Lm = 15.34m

掘進機·後続管

Ls = 10.00m

ヒューム管長

H = 2.43 m

N1 = (Lm - Ls) /H = 2.19 ± 2 ± 2

L1 = Ls + H * N1 = 14.86m

②2段目以降中押設置距離(Ln)

2段目中押設置箇所迄のHP本数

Nn

中押推進距離

ln

 $ln = R/ (Fm * \beta) = 27.67m$

Nn=ln/H=11.38本≒11本

Ln = H * Nn = 26.73m

③総延長に対する中押設置段数(N)

推進延長

L = 445 m

L = L1 + Ln * N

N = 16.09 箇所 ≒ 17 箇所