軟弱地盤も岩盤も 残置障害物をも切削し完工

営業部主任

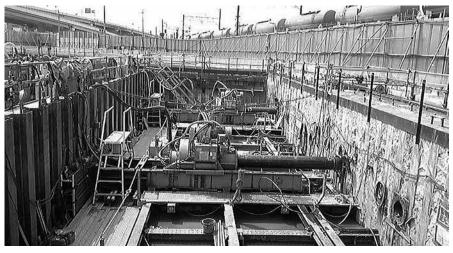
まえがき

SH・SHミニ工法は、(公社)日本推進技 術協会の小口径管推進の工法分類によ ると鋼製さや管方式ボーリング方式二 重ケーシング式に分類され、さや管方 式を採っている管きょ敷設工法である。

SH工法研究会として協会を設立し、 約30年が経過し、さや管方式による下 水道管きょ敷設の普及に努めてきたが、 その間にもパイプルーフ、地滑り地帯 での排水ボーリングと様々な推進工事 を行って来た。現在では東日本大震災 の影響で被害を受けた管きょの入れ替 えを行う改築推進工法としても活躍して いる。

当工法は軟弱層から砂礫、玉石、転 石、岩盤に至るまで広い範囲地盤に適 応する。刃先の切削ビッドで、地中に 残置された障害物も切削し、推進途中 で切削ビッドを交換できることから、鋼 製ケーシング等の残置障害物を切削し、 既設マンホール等へ到達させる施工も 多い。

最近では、粗石、岩盤に適応できる 工法が数多く開発され、他の工法がそ れぞれ活躍する中、当工法も特長を生 かし、適材適所で活躍している。


今回は、下水道工事以外での施工例 を紹介する。

施工例

2.1 軌道下のタイロッド敷設推進工事

軌道下のバイパス建設工事におい て、タイロッドを敷設するために、推進 工事を行った施工例である。発進立坑 に推進機の搬入において、クレーンの 位置から推進機を設置する場所までの 距離が長く、通常の搬入方法では困難 であった。このため推進機を分解して 重量を軽減し、立坑内で組上げること

から開始した。鋼管径400mmに対し、 推進距離が約68mと比較的長かった ことや、推進する位置にはコンクリート 魂、石積みや残置された鋳鉄管があり、 更にはH鋼(300mm)やPC杭の障害 物があった。軌道からの土被りは小さ い箇所で1m程度であり、軌道への影 響が懸念されるため、地盤改良をする ことはできなかった。障害物を切削し、 軌道への影響を与えず推進を行うこと が条件であったため、取込制御装置と 普通・開放型を交互に使用して、推進 工事を完成させた。

推進施工の状況

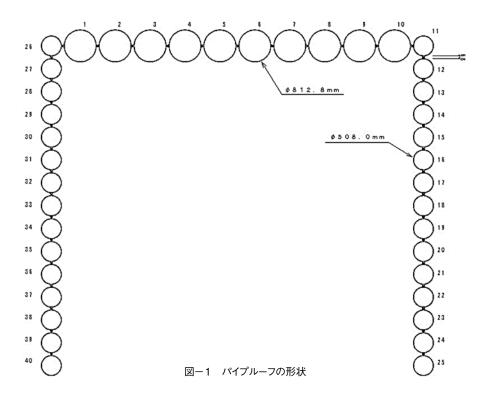

写真-2 発進側での推進完了の状況

写真-3 到達側での推進完了の状況

写真-4 推進中切削した松杭

2.2 ビルの地下施設から隣接するビルへの推進工事

都市部において、既存のビル地下施設から隣接する建設中のビルに電気、空調等の供給を地下から行うため、当工法でその供給管路の施工を行った。すでに完成しているビル地下施設に推進機を搬入するには、コンパクトなことが求められた。このため推進工法はSHミニ工法での施工とした。推進距離は約24mとそれ程長くはないが、推進位置はGL-8.0mから-10mとN値が低い地盤であったため、取込制御方式での施工を行った。到達後、刃先は発進側に引き抜くため、到達側での回収する機材はなく、ビルの建設工事に与える影響も軽減することができた。

2.3 海に隣接する箇所での 水道さや管工事

水道管の敷設工事で、防潮堤がある ために開削による水道管敷設が困難な 箇所を推進により施工した。敷設する 水道管径は φ600mmの鋳鉄管で、接 続するフランジ外形を考慮すると、鋼 管径は φ 1,000mm となり、立坑は鋼 製ケーシングの φ3.000mmでSHミニ の施工となった。施工箇所は帯水砂層 で海に隣接しており取込制御方式での 施工を行った。推進箇所には残置松杭 が数本出現することが予想されたので、 事前に刃先に特殊な加工を施して推進 を行った。推進距離が約13mの途中に 松杭11本の出土となったが、事前に杭 に当たることが予想できたことや、推進 距離があまり長くなかったこと、地山が意 外に自立していたことが幸いであった。

2.4 パイプルーフ工事

都市部で地下道を建設するために坑 口工としてパイプルーフを施工した例で ある。

パイプルーフは図-1に示す、コの字型の形状である。水平の部分No.1~10までは鋼管径 ϕ 812.8mmで、垂直