帯水層や礫地盤での実績から進化した ユニコーンDH-ES工法

泥水推進工法研究会

はじめに

ユニコーン DH-ES 工法は低耐荷力方 式一工程泥水方式に分類される。本工 法は、泥水方式の特長を生かし、帯水層 での安定した施工や長距離推進、礫層 推進などにおいて高い信頼を得ている。

写真-1 ユニコーン DH-ES 掘進機

工法の特長

ユニコーンDH-ES工法の特長として 大きく3つが挙げられる。

- ①ユニコーンDH-ESは、低耐荷力推進 工法で泥水方式を採用した国内で最 初の工法である。泥水方式を採用す ることにより、発進立坑から切羽まで の区間を環流する泥水で満たし、そ の圧力を調整することで切羽の安定 を図ることができる。それと同時に掘 削土砂を泥水とともに搬出し、地上 の泥水処理装置で土砂と泥水とに分 離する。このため、低耐荷力方式に おいても、様々な土質に対応するこ とができる。
- ②従来の先導体はコーンクラッシャによ る破砕のみであったが、玉石用面板 を装着することにより、面板による1 次破砕、コーンクラッシャによる2次 破砕が可能となり、最大礫径は呼び 径程度まで対応できる。
- ③泥水方式を採用することにより、推進 抵抗が大幅に軽減されている。泥水 方式では、推進力が比較的低い傾向 にある。それは先導体から送られた 送泥水と滑材が後方の推進管にまわ り、テールボイド効果が発生するた めと考えられる。これにより、長距離 推進に加えて、本来は施工には適し ていないと言われる低耐荷力管推進 での礫質土施工を可能としている。

区分	土質区分		N値 (修正N値)	適用礫率	適用礫径	玉石の一軸圧縮強度		備考
						φ 200 • 250	$\phi 300 \sim 400$	1佣-5
A	普通土	粘性土	1 ≦ N ≦ 15	15%程度	呼び径の1/5程度		_	普通土用カッタを使用
		砂質土	1 ≦ N ≦ 30					
В	硬質土	粘性土	$15 < N \le 40$					
С		砂質土	$30 < N \le 50$					
D	砂礫土			30%程度	呼び径の1/3程度			
E	玉石混り土 I		$N \le 50$	50%程度	呼び径の70%程度	150MN/m²以下	200MN/m²以下	玉石用カッタを使用
F	玉石混り土 Ⅱ			70%程度	呼び径の100%程度			
G	軟岩	土丹、風化 花崗岩等	$(50 \le N \le 100)$	_	_	20MN/m²以下(岩盤強度)		※岩盤の種類による

3 周面抵抗力係数f₀₁

表-2 土質別周面抵抗力係数

 (kN/m^2)

土質	粘性土	砂質土	砂礫土
研究会 f ₀₁	1.2	1.6	2.0
日推協f ₀₁	2.0	2.5	_

表-3 適用推進延長

呼び径	適用推進延長(m)		
250	120		
300 ~ 400	150		

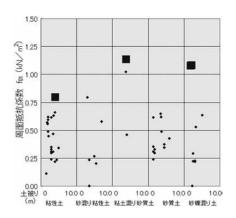


図-1 土質別周面抵抗係数

写真-2 先導体検収(DH-ESL)

写真-3 推進状況(115本目)

低耐荷力管推進の推進抵抗算出は、施工経験から簡便式がよく合致するため、周面抵抗力係数 f_{01} を用いている。当研究会では、独自で周面抵抗の調査を行って土質別に推進力の統計を取り($\mathbf{Z}-\mathbf{1}$)、それぞれの最高値に安全率と滑材効果を乗じて f_{01} を設置している。

推進抵抗が低い傾向にある泥水方式 において、周面抵抗力係数を見直すこと により、長距離での推進が可能となった。

4 施工実績

4.1 長距離の施工

施工場所:静岡県浜松市 施工期間:平成23年10月

~同24年4月

管 径: φ300mm

推進延長:114.9m(1スパン)

土 質:帯水性砂質土 (図−2、写真−2~5)

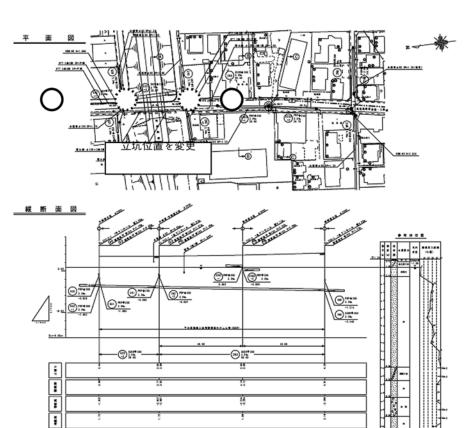


図-2 平面図

...

写真-4 車上プラントによる施工

写真-5 先導体到達状況