地中障害物対応型泥濃式推進工法 (ミリングモール工法)による 掘進機内からの薬液注入

昌晴

範囲で検出します。

ミングを図る重要な役割があります。

以前にも説明しましたが、前方探査

図-1は地中障害物検出範囲と探査

モニタに表示される検出グラフの表示

の感度は掘進機カッタ面から約2.0mの

はじめに

ミリングモール工法の開発は7年目に して完成することができました。先行し て開発した電磁波誘導測量装置(ネオ ジャストシステム) がミリングモール開 発原点です。

電磁波を使った前方磁気探査にはじ まり、切削方法の確立、機内注入設備 の開発と、安全に地中障害物を切削す るために必要な装置を開発、ミリング モールへすべて反映させました。

ミリングモール用に開発されたこれら の設備は、それぞれ単体で開発を行な い最終的にすべてをまとめあげました。 他社では決して真似できないものを作り

今回は、ミリングモール工法の前方 探査と、薬液注入について説明いたし ます。

前方探査

前方探査は、切削や注入開始のタイ

出そうと言うのが我々の意気込みでした。

色です。

これは、掘進機から放出した電磁波 (一次磁場) を地中金属障害物が帯び て、誘導電流の発生と同時に(2次磁場) が発生します。この2次磁場を掘進機 に取付けた受信コイルで検出して障害 物の有無を確認できます。この反応が モニタヘグラフ表示されます。色識別 は、この2次磁場が受信コイルへ入っ てくる角度(位相角)が0.07°で青色と オレンジ色が表示され、0.07°以上でオ レンジ色、0.14°以上で赤色となります。 これを実測したものを距離として表示 しております。また、受信コイルよりも カッタスポーク(オーバカット部)が前 方にあるため、金属であるスポークも電 磁波の影響を受けます。そこでカッタ回 転始動後にスキャニング処理を行ない、 このカッタスポークの回転による影響を 除去しています ($\mathbf{図} - \mathbf{2} \sim \mathbf{5}$)。

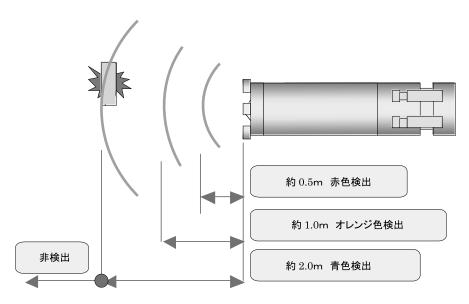
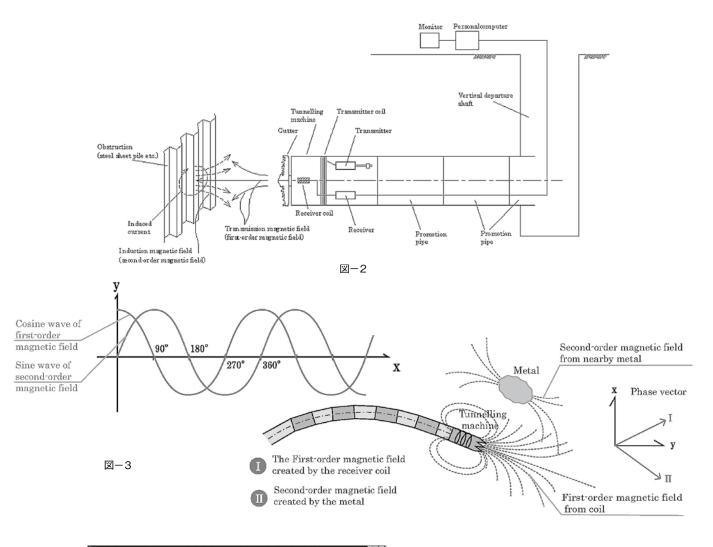
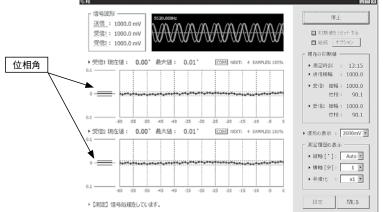




図-1 地中障害物検出範囲とモニタ表示色

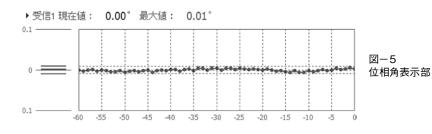


図-4 前方探査モニタ

3 薬液注入

機内薬液注入設備は専用ボーリングマシンの設計を行ない、φ1,000mm 掘進機内で使用できるようにしました。掘進機に後続する専用管として、この専用ボーリングマシンを設置でき、自在に回転させて位置調整できる機構を備えました。

ミリングモールで使用する注入材料は、掘進機の前面へ注入するため、掘 進機周囲のテールボイド部へ浸透し、 固結することが考えられるため、推進力 への影響を考慮し、溶液タイプを使用 します。