一般の高水圧下

軟弱シルト層での 大土被り高水圧下の急曲線施工

ただできる。たきまたが、たきまたが、洗治機動建設工業(株)関東支店支店長

1 はじめに

本工事は、川崎市水道局発注の「夜 光2丁目配水管 600mm・400mm及 び工業用水道2号配水支管 800mm・ 600mm布設替工事」に伴い、本管と なる φ 1,000mm鋼管のさや管として φ 2,000mmの推進工法用鉄筋コンクリー ト管を推進工法で敷設するものである。 なシルト層で土被りが23.0mあることから、大土被り高水圧下での施工となる。また、推進線形は発進立坑から直線で千鳥運河下を約45.8m推進し、運河の途中から曲線半径R=30mで左側に進み、運河の向こう側の国道を斜めに横

断して歩道との境界に設けた到達立坑 に到達するという管呼び径15倍の急曲 線区間を含む厳しい施工条件となって いる。

本稿では、工事の概要、課題と対策、 施工結果等を報告する。

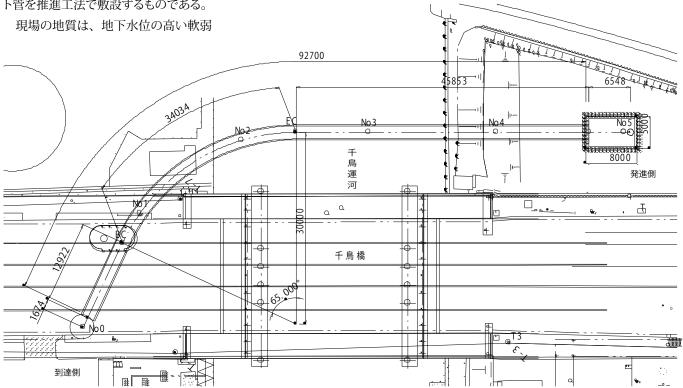


図-1 推進路線図

2 工事概要

工事名:夜光2丁目配水管600mm

・400mm及び工業用水道 2号配水支管800mm· 600mm布設替工事

工事場所:神奈川県川崎市夜光町地内

工 期:平成21年10月1日

~12月30日

発 注 者:川崎市上下水道局

工事内容:

T. 法 泥水式アルティミット工法 さや管 内径2,000mm推進工法

用鉄筋コンクリート管

(鋼・コンクリート合成管)

推進延長 L=92.7m

曲線半径 R=30.0m

土 質 シルト層 N=5

土被り 23.0m

地下水位 G.L. - 2.5m

(図-1)

推進施工上の課題と対策

3.1 掘進機の選定

(1) 課題

高水圧下の推進施工であるため、切 羽の制御が確実に行える工法 (掘進機) の選定が必要となった。また、運河を横 断することから、万一の場合の緊急避難 の状況を考えると、少なくとも掘進中は 掘進機内および管内に作業員が立ち入 る必要のない掘進方法が求められた。

(2) 対策

このため、高水圧下でも、泥水圧に より切羽の安定制御が確実に行え、曲 線施工においても遠隔操作で集中管理 が確実に行えるアルティミット泥水式推 進工法を採用した。アルティミット泥水 式推進工法は、掘進機の遠隔操作と ジャイロコンパス等の計測装置を用い たリアルタイム計測システムにより切羽 安定管理に必要な情報と掘進機の位

置・姿勢等の情報をリアルタイムに把 握することができ、掘進管理に伴う一連 の作業を集中制御できるという利点が ある。

3.2 推進力の低減

(1) 課題

曲線施工では推進力の曲線外側方向 への分力による側方地盤と管外周面と の摩擦抵抗力が付加される。また、推 進管路部の地盤は、軟弱なシルト層で あり、掘進作業休止時の土圧による推 進管の外周を締め付ける縁切り推進抵 抗力の増加が懸念された。このような 推進力の増加は、トラブルの大きな要 因となり、推進管の破損や周辺地下構 造物への悪影響が懸念される。

(2) 対策

推進力を低減させるために一次・二 次注入を基本としたアルティミット滑材 注入システム(ULIS)を採用した。注 入材料としては、一次・二次注入とも に減摩性能が特に優れた高粘性滑材(1 液性)のアルティー Kを用いた。一次 注入は、掘進機直後のオーバカット部 分を速やかに充填する計画から、注入 量はオーバカット量の全量で管理した。

ULISの二次注入は、一次注入滑材の 地下水による希釈や摩耗に対する補足 注入を目的とすることから、注入管理 は量管理とともに圧力管理を併用した。 二次注入は、自動的に後続推進管の注 入箇所を移設しながら全線均等に連続 して低圧注入する ($\mathbf{Z} - \mathbf{Z}$)。

3.3 バッキングの防止

(1) 課題

高水圧下の推進施工の場合に発生す る大きな課題として、バッキング現象が ある。これは後続の推進管の据付け作 業時に、元押ジャッキを後退させたとき に、掘進機面板にかかる水圧により掘 進機が発進立坑側に押し戻される現象 である。バッキング現象は、切羽地山 の崩壊を招来し、路線部の陥没や精度 不良というトラブルを発生させる。本工 事の土被りは23mあり、地下水位も高 いことから事前の検討で大きなバッキン グ力が想定され、十分な検討を行った。

(2) 対策

想定されたバッキング力は約1,190kN であった。この対策として、インサート 方式のバッキング防止装置を装備した。 バッキング防止装置は、推進管外側に

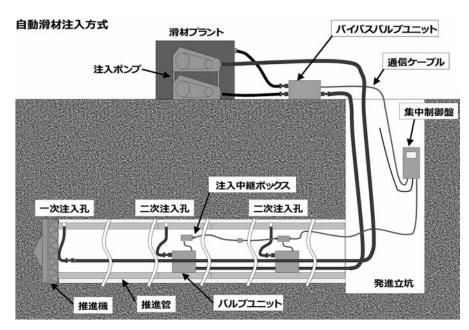


図-2 ULIS系統図