題以築更新技術

既設1号マンホールから 発進・到達を実現した スピーダー SPM工法

大石 益平 スピーダー協会 事務局長

1 はじめに

永年整備されてきた下水道の普及率は全国平均75.8%となった。一方、敷設後50年を経過して、老朽化により道路陥没に至り機能不全になっている管きょが多くなっていく状況であります。特に老朽化が懸念される大都会等では、開削工法による下水道管きよの再構築は道路の交通障害、地下埋設管の切り回し等、施工期間の長期化と施工コスト面でも不利となります。また、更生工法では、内空断面が縮小されることにより流下能力が低減される恐れがあります。

そこで、非開削工法で行う改築推進工法に注目が集まっています。改築推進工法に分類されるスピーダー SPM工法(以下、本工法)は平成9年に開発を目指して、今後老朽化した管きょの改築推進の必要性を解決するために管路の内側より既設管(鉄筋コンクリート管・陶管)を破砕して同径の塩ビ管を挿入して流下能力を確保すると同時に破砕した既設管は拡大形成し内部に挿入される塩ビ管と二重管にすることで管路の強度アップと耐震性を考慮しました。また、開発に当たり既設管きょの

口径を調査した結果呼び径250が一番 多く敷設されていることより、破砕力・ 破砕状態を調査するための基礎実験を 行い、呼び径250の中を基礎実験で得 た破砕力の機能を確保し、環境を考慮 し施工性および操作性を考慮して実験 機を製作し目標機能を確認した後、鉄 筋コンクリート管を埋設し工場実験を実 施して機能の確認と作業性等を確認し ました。現在施工実績は1件ですが、 開発当初にはなかった技術です。その 後さらに施工性を向上する為に既設マ ンホール間での施工ができる様にする ために、破砕機の分割発進・回収、破 砕機引込装置、摩擦減少材兼裏込め注 入材を注入することにより、存置となる 既設管を再利用する技術など、実施工 を通して着実に進歩しています。以降 本工法の施工概要施工事例、技術的展 開、課題などを報告させて頂きます。

2 施工概要

本工法は改築推進工法の静的破砕方式(ロット牽引式)に分類されます。この静的破砕方式は破砕機本体後部に水平に内蔵した油圧ジャッキの水平力を数倍の垂直力に変換し4本の拡張子

を押し広げて既設管を破砕した後、あらかじめ既設管内に挿入していた牽引ロットで破砕機を牽引するとともに破砕機本体後部に新管を接続し敷設する工法です(図-1、写真-1)。

破砕片を新管の外側に存置する方式 でありますので、無排土での施工となり 環境にやさしく、経済的な施工が可能 です。また、発進および到達立坑の最 小サイズは、1号マンホール(内径 φ 900mm: 開口部 ø 600mm) としてい ます。つまり、既設の1号マンホール を発進および到達立坑として利用する 事が可能であるため、改築推進工法の 為に、新たに発進および到達立坑を築 造する必要がありません。これは、本 工法の最大の特徴であると言えます。 開発当初は、発進および到達立坑を o 1,500mm以上必要としていましたが、 破砕機の分割発進ならびに分割回収が 可能になった事と、引込装置 (PM-01) の開発により既設1号マンホールから の施工を可能としました。ここでは、発 進および到達立坑は破砕機が発進する 側を発進立坑、破砕機が到達する側(引 込装置を設置する側)を到達立坑とし ています。なお、破砕機の全長は約 1,240mmで、分割した際のフロントユ

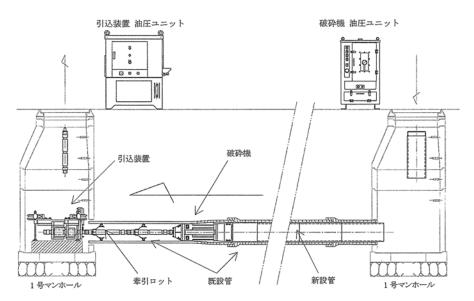
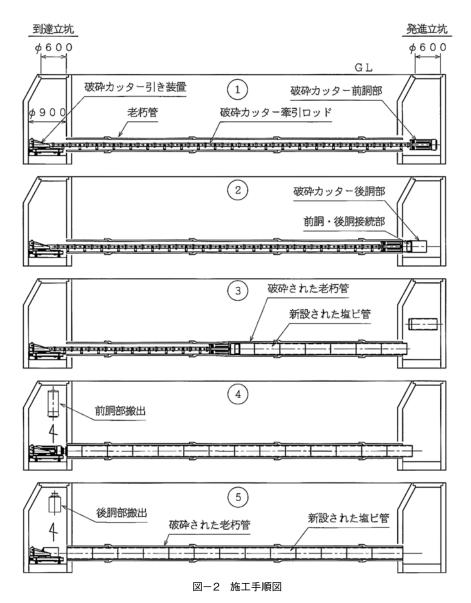



図-1 施工概要図

SPEEDEN SPM

写真-1 破砕機及び油圧ユニット

ニット部は、約600mmとなります。

既設管は鉄筋コンクリート管B形・陶 管を標準としており、その適用管径は 呼び径 φ250~350mmですが、現状 で対応しているのは呼び径 φ250mm のみとなっています。新管は既設管と 同径の硬質塩化ビニル管で、スパイラ ル継手付直管を標準としております。新 管が既設管と同径の硬質塩化ビニル管 となりますので、流下断面積の縮小に より流下能力が低減する恐れがありま せん。これは、更生工法にはない、改 築推進工法の大きな利点となっており ます。新管である硬質塩化ビニル管の 有効長は、立坑サイズによって異なりま す。例えば、発進立坑が最小サイズの 1号マンホール (φ900mm) の場合、 塩ビ管の有効長はL=600mmとなりま す。また、改築推進延長は最大で60m としています ($\mathbf{図} - 2$ 、写真 - 2)。

破砕機ならびに引込装置の操作方法 は、各油圧ユニットから有線で配置されるペンダントスイッチで行います。ま

写真-2 破砕実験状況