特殊条件下での発進・到達

望月 崇
(公社)日本推進技術協会
技術委員会
契約適正化部会

1 はじめに

日本での推進工法は、1948年さや管として内径600mmの鋳鉄管を軌道下の横断に施工されたのが始まりである。初期の推進工法の施工は、地山が自立した地盤での刃口推進工法であった。その後、需要の拡大に伴い、安全性が高く、多種多様な地盤へ対応可能な工法として泥水工法の採用、そして、土圧式、泥濃式へと密閉型推進工法が主流となっている。

また、1975年4月7日付の労働省基発第204号「下水道整備工事、電気通信施設建設工事における労働災害の防止について」の通達により、推進管内に人が入って作業する場合の口径は800mm以上を原則とすることになった。このため立坑において、遠隔操作で掘進、方向制御する小口径管推進工法は、各種工法が開発され、都市における管路埋設技術として、実績を拡大している。

このような推進工法の定義は、「発 進・到達立坑間において工場で製作された推進管の先端に掘進機・先導体ま たは刃口を取付け、ジャッキ推進力等 によって管を地中に圧入して管路を構 築する工法である」となっている。し かし、実績を拡大している推進工法では、発進・到達立坑間だけの施工ではなく、既設構造物(マンホール、管きよ等)から発進したり到達する等の特殊な事例が報告されている。

ここでは、この特殊状況での発進到達について、必要とされる背景、特殊な発進到達の現状、施工上の留意点等について述べることにする。

2 特殊な発進到達が 必要とされる背景

推進工事において特殊な発進・到達 の施工事例が必要とされる背景は、周 辺の環境が大きく影響していると考えら れる。その他、輻輳した地下の状況、 そしてこのような状況での経済性等があ ると考えられる。

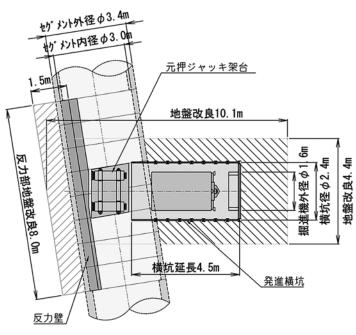
2.1 周辺環境

周辺環境としては以下のようなことが 考えられる。

(1) 立坑用地を確保できない

推進工事では、掘進機を据え付け発 進する立坑、掘進に必要な機材を設置 するための発進基地としての立坑用地、 掘進機を到達、引出し、掘進機を回収 するための到達立坑用地が必要となる。 推進可能な延長は伸び、曲線施工も可 能となり推進技術の発達により立坑用 地の選定範囲は広がっているが、都市 化した中で確保することが難しいのが 現状である。

(2) 継続工事、迂回路等の原状回復


一般に、推進工事は工区に分割して 施工される。このため、次期工事のために立坑を掘削したままで放置すること により、土留め、覆工板、迂回路等の 仮設の維持管理が必要となる。そして、 周辺環境への影響等が発生する。この 影響を発生させないため、マンホール を築造し早期の埋戻し、復旧そして原 状回復が必要となる。

(3) 早期の供用開始

周辺住民へ工事完了によるメリットを示すための、施工を完了した区間を早期に供用開始する必要がある。このため、マンホールを設置し、立坑を埋戻し、復旧する場合がある。

(4) 既設構造物を抱え込んだ 立坑の大規模化

既設構造物(マンホール、管路等)を立坑に抱え込んだ状態で立坑を設置する場合、施工規模が大きくなり、周辺住民等への影響が拡大する。このため、影響の拡大を防止し、立坑を設置しないで施工できる方法を考える必要

12000 10000 9800 9800 20 9800 25 986 3500 1FL立面図

図-1 既設管発進状況平面図

図-2 既設管発進状況平面図

があった。

2.2 地中の状況

(1) 埋設管

都市部の地下の状況は、埋設管が多数埋設されており、新規の埋設管は深い位置への埋設が求められている。このため、既設埋設管への影響を防止する必要もあり、埋設管への対応を行いながらの立坑設置は困難となる。

(2) 接続埋設管、構造物の大深度化

都市の地下は埋設管が輻輳しており、 新規の埋設管は大深度化している。こ のような状況で施工された接続管きょ、 構造物は大深度であり、立坑を設置す ることが困難で経済的に不利となる。

2.3 その他

立坑を施工しないため、工期の短縮による経済性の評価により、特殊な発 進到達の施工が必要となる。

3 特殊な発進・到達

3.1 既設管からの発進

既設管きょからの発進事例は、シールド工法ではかなりあるが、推進工法

での事例は少ないが施工実績はある。 推進工法の場合、推進管を既設管坑内 を運搬し、坑内でこの推進管を推進架 台に設置する必要がある。そして、管 きょを開口することによる補強、発進坑 口や反力壁の設置、推進ジャッキや押 輪を設置するスペース等を坑内で確保 する必要がある。しかし、既設管きよ 内で確保することは難しいため、発進 部分を拡幅する等の対応が必要となる。 このため、シールド工法に比べ、施工 実績が少ないものと考える(図-1)。

3.2 既設構造物からの発進

既設構造物から発進するためには、 既設構造物内に掘進機を据え付ける必 要がある。また、推進管も掘進に合わ せ投入、据え付ける必要がある。

このため、掘進機は、分解搬入し、 そして、容易に組立が可能とする機構と し、また、分解した掘進機と推進管を 地下に投入するための空間を確保する 必要がある。このため、既設構造物を 補強して開口し、地上においては、既 設構造物に合わせた土留め、覆工を施 工し、投入スペースを確保する必要がある ($\mathbf{Z}-\mathbf{Z}$)。

3.3 既設管きょ・構造物への到達

既設管きょへの到達は昭和50年代か ら施工されていた。当初は、地盤改良 を行い、地山を自立させ刃口推進で施 工されていた。幹線管路へ枝線から流 入のため、幹線管路に近接し立坑を設 置し、推進工法で管路を築造する方法 であり、現在でも施工されている。推 進延長が長くなると、密閉型の掘進機 を使用し、到達後、掘進機を既設管内 に引出し、坑内を運搬搬出した。また、 運搬搬出ができない場合には、シール ド工法と同様に、掘進機を全損とし、 掘進機の外殻を残置し内部の機器を撤 去していた。そして、撤去後、掘進機 部を二次覆工していた。しかし、巻厚 を確保しにくいため品質を確保するこ とが難しいのが現状であった。そして、 推進工法の基本は、掘進機を引き上げ 再度使用する工法であるため、シール ド工法と違った、既設管への直接到達 する各種の工法が開発された。