ジャイロを搭載したロボット測量により 高精度な施工を可能とした 長距離・曲線推進

ミクロ工法協会

ミクロ工法の沿革

ミクロ工法は、小口径の分野におい て、自動化・ロボット化技術により急曲 線推進の長距離化を目指し平成8年に 開発された工法です。その後、平成9 年の実用化から都市基盤整備に必要不 可欠な工法として認識され、数多くの 実績を積み、現在に至っております。

現行のミクロ工法は、泥水式二工程

表-1 型式分類

推進方式	泥水式一工程方式	泥水式二工程方式
1年進力式	化小八 工性刀八	化小八二二性刀八
型式	NA型	30R型
適用管径(φ・mm)	400 • 500 • 600	400 · 500
適用土質	粘性土、砂質土、砂礫土	粘性土、砂質土、砂礫土 玉石混り土、固結土、岩盤
推進可能延長(m)	250	300
最少曲率半径(m)	60	30
曲線対応	複数曲線	
最大土被り	制限なし	
測量方法	自動測量システム 長距離レーザ測量	自動測量システム
曲線部地盤改良	ほとんど不要	
発進立坑最少寸法 (φ・mm)	2,500	3,000
到達立坑最少寸法(φ・mm)	1,800	2,500

方式の30R型と、泥水式一工程方式 のNA型を有しております。30R型は、 最少曲率半径R=30m最長推進距離 300mまで、NA型は最少曲率半径R= 60m最長推進距離250mまでの推進施 工が可能です。

30R型NA型ともにジャイロを搭載す るロボット測量を行うことにより、高精 度な長距離・曲線推進が可能です。

ミクロ工法の特長

2.1 NA型・30R型 共通の特長 ①ジャイロを搭載したロボット測量 (写真-1、2)

曲線推進の測量はジャイロを搭載し たロボット測量による管内測量方式を 採用しており、土被りや埋設物、地上 交通など施工環境の制約に影響を受け ないので、高精度で信頼性の高い測量 ができます。

写真-1 走行計測ロボット(ミクロ工法30R型)

写真-2 自走式計測ロボット (ミクロ工法 NA型)

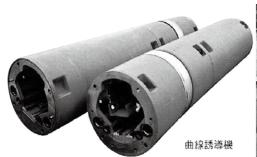

写真-3 配置写真(ミクロ工法NA型)

写真-4 配置写真(ミクロ工法30R型)

写真-5 ポンプ筒(ミクロ工法30R型)

強制型内部

写真-6 曲線誘導機(ミクロ工法30R型)

また、ロボット測量結果を活用することにより、世界座標による測量管理が可能であり、推進管全線の位置や境界との離隔の確認、下水道台帳への活用、取付管推進時の推進本管位置の確認等ができます。

2.2 NA型の特長 (写真-3)

①推進可能延長250mまで可能 【流体輸送対策】

ミクロ工法NA型では長距離推進の場合、ポンプ筒を使用します。ポンプ筒は、排泥ポンプの吸込み可能距離の不足分を補い、流体輸送の長距離化を可能にしています。

- ②最少曲率半径R=60mまで可能
- ③小型立坑 φ2,500mm からの小立発 進が可能

都市型の半管推進へ対応するため、 自走式計測ロボットをさらに小型化する ことにより、 ϕ 2,500mmからの小型発 進を可能にしました。

2.3 3OR型の特長 (写真-4)

①推進可能延長300mまで可能

【周辺摩擦対策】

一工程目に使用する自在型曲線誘導 機内に内蔵された滑材管を使用し、任 意の位置で滑材を吐出することにより、 減摩効果を発揮します。

【流体輸送対策】

一工程目に使用するポンプ筒は、排泥ポンプの吸込み可能距離の不足分を補うことにより、流体輸送の長距離化を可能にしています(**写真-5**)。

②最少曲率半径R=30mまで可能 【R=30mの急曲線を可能にした先導体】

掘進機(2箇所)、ポンプ筒(1箇所)、 強制型曲線誘導機3本(各1箇所)計 6箇所の方向修正ジャッキで曲線を造 成するため、安定した急曲線施工が可 能です。

③一工程目に自在型曲線誘導機を使用

30R型は、一工程目の掘進を全線ボルト連結された自在型曲線誘導機(鋼製)で行うため、発進立坑からの引戻しが可能です。

この利便性を生かし、橋台やボックス

カルバートの基礎杭隙間をぬう線形や、 予期し得ない支障物・障害物遭遇時の 対応策として引抜き迂回推進が可能で あり、施工実績もあります(写真 - 6)。

3 ミクロ工法の施工事例

3.1 狭い生活道路内でインフラが 輻輳するなかでの複数急曲線

当現場はボックスカルバート水路やガス管、水道管が並行する生活道路で、道路線形に沿って複数急曲線を含む長距離推進2スパンの工事でした。道路幅員5.0mのうち、ボックスカルバート水路が3.0mを占有し、2.0mのなかにガス管と水道の既設管が埋設されていて、その下部を推進するという難条件での施工でした。

ミクロ工法は管内を往復するロボット 測量(管内測量)であり、狭い道路内 で埋設管等が輻輳する下で、長距離・ 急曲線の推進を可能としています(図 -1~3)。