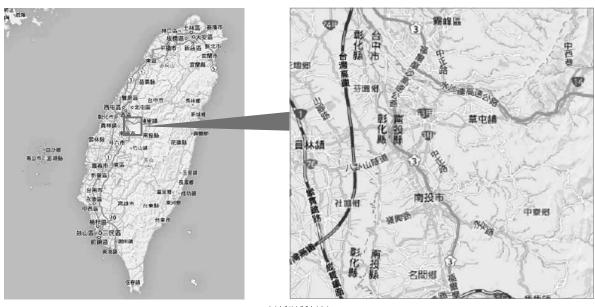
解

説

三石地盤

小口径立坑に適応した 巨礫地盤対応掘進機の開発と その適用事例

ままやま のりひこ **書彦** 関村機械製作(株) 建設機械部建機設計課


1 はじめに

下水道をはじめとする管きょの埋設 工事は、地上構造物の過密化や周囲の 交通事情、さらに地下トンネルの輻輳 や地下施設、作業環境などの諸事情に より、シールド工法や推進工法が多く 採用され、最近の推進工法では、さら に厳しく困難な施工条件下で適用するこ とが求められている。特に厳しい施工 条件とは、玉石混り砂礫層、岩盤、巨 礫地盤、複合地盤などの過酷な土質条件下への適用は勿論のこと、経済性や安全性も兼ね備ることが求められ、これらに応えるため日々、推進工法は著しい技術革新を遂げつつある。

しかし、現状では工法の選定誤りや 調査不足、施工管理のミスなどに伴った 様々なトラブル等が発生していることは、 否めない現状であり、これらを克服すべ く、より適正な土質調査や工法の選定、 施工管理方法の確立も、推進工法の技 術革新と並行して求められている。

本稿では、現在、台湾において玉石・巨礫地盤での仕上がり内径1,000mm下水道築造に関わるBOT工事(Build:建設/Operate:運営/Transfer:譲渡)が多数発注される中、これらの特殊条件をクリアする新たな小口径泥水掘進機を開発した内容と施工実績について報告する。

なお、台湾でのBOT工事における特殊条件とは以下の通りである。

マー1 工事場所 南投県草屯鎮は、台湾のほぼ中央

①小口径発進立坑

 ϕ 3,290mmより発進が可能な機長であること。

②小口径到達立坑

 ϕ 3,290mmに到達し引上げ可能な機長であること。

③礫径

φ600mm以上の巨礫地盤での掘削 が可能な掘進機であること。

2

1000型泥水式掘進機の 施工実績

2.1 工事概要

工事名: 葡萄児草草鎮汚水下水道系

統管線工程

工事場所:台湾南投県草屯鎮各所

 $(\mathbf{Z}-1)$

発注者:南投県政府

工 期:660日

工事内容:

工 法 泥水式推進工法

写真-3 施工路線付近の調査にて出土した 土質状況(礫径 ϕ 2 \sim 9.5 mm)

写真-6 発進基地内の状況と使用した推進管

(スーパーマイティ工法)

管 寸 法 内径 φ1,000mm

外径 φ1,220×1,600mm

総 延 長 2,014m (約60スパン)

土質条件 玉石混り砂、粘性土、

卯石 (**写真-1~4**)

最大粒径 ϕ 600~750mm

玉石強度 119~304MN/m²

立坑寸法:圧入鋼管

外径 φ 3,290mm

(写真-5~8)

2.2 1000型泥水式掘進機の概要 および仕様

①多種多様な土質条件に対応するため、1000型泥水式掘進機はカッタヘッドを交換することにより、巨礫・岩盤層(図-3)や砂礫・玉石層(図-4)および砂層・粘土層・硬質土層(図-5)まで、幅広い土質に適用が可能な仕様とし、施エスパン毎の土質要件に適合させカッタヘッドを交換する方式とした。

写真-1 施工路線付近の調査にて出土した 土質状況 (礫径 φ650 mm)

写真-4 施工路線付近の調査にて出土した 土質状況 (礫径 φ750 mm)

写真-7 発進側立坑内の状況 (立坑寸法: φ3,290×深さ13,000mm)

写真-2 施工路線付近の調査にて出土した 土質状況 (礫径 φ211 mm)

写真-5 発進基地とその周辺状況

写真-8 到達側立坑内の状況 (立坑寸法: φ3,290×深さ13,000mm)