浸水対策と推進工法 ~大土被りと小土被りでの施工事例報告~

はじめに

大雨の際に都市機能を確保し、市民 の生命・財産を守るため、下水道の浸 水対策が果たす役割は重要である。

近年の地球温暖化に伴う気候変動な どを背景に、時間50mmを超えるよう な集中豪雨が増加しており、毎年のよ うに甚大な災害が発生しているのが現 状である。これに伴い国土交通省指導 のもと、浸水対策マニュアル(表-1) に基づき、各自治体がハード、ソフト 面で対策を計画し実施されている。そ のような現状で、推進工法は、ハード 対策における増補管雨水バイパス管、 雨水貯留管としての役割を果たすことに なっている。また、本題の浸水対策と は多少異なるが、下水道の目的に「公 共用水域の(水質)保全」がある。

我が国は、下水道普及の過程で合 流式を採用してきたために、雨天時に 汚水の一部が無処理で、公共用水域に 放流される問題(CSO)を公害とされ、 その解決にも推進工法は、浸水対策と ともに役だっている。以下に、弊社に おける雨水対策事業のなかで、ジオリー ド協会による協力のもと施工した、大 土被りにおける泥水式推進工法、小土 被りにおける泥濃式推進工法の施工を 紹介する。

工事概要その1

工事名: 貯留管(合流改善)管渠築

造工事

工事場所:大阪府中核市

推進工法:泥水式マッドマックス工法

推 進 管:φ2,400mm

外殼鋼管付推進工法用鉄筋 コンクリート管(4種50N)

掘進機外径: φ2,840mm

推進延長:541.22m(推進管223本)

最小曲線半径:R = 300m(図-1)

縦断勾配:上り0.8%

土被り:20.8~22.3m 掘削対象地盤:洪積砂質土層

洪積粘土層(図-2)

発進立坑:SMW 10.8×8.8m

到達立坑:鋼製ケーシング

 ϕ 5,090mm t = 28mm

補助工法:発進・到達坑口

JEPL3重管高圧噴射撹拌工 法+ダブルパッカー工法

2.1 当現場における施工前の問題点

および検討事項

(1) 大土被り施工(土被り20m以上)

当現場は、土被りが22m以上あり、 切羽における水圧は0.2MPa以上と想 定される。

大土被りにおける推進工法の問題点 および検討課題

①バッキング (写真-1)

②発進方法 坑口金物、掘進機分割

③到達方法 潜水士による水中到達

(写真-2~5、図-3)

(2) 長距離推進

当該推進管は(4種50N)内圧管(内 水圧 0.19MPa) JCと規定されており、 外圧4種、内水圧0.19MPaを満足する 中押管(ST管)は製造できない。よって、 推進力低減装置(SMCシステム)を採 用し、2次滑材の選定を重視しながら、 元押のみの推進工法を選択した。

(3) まとめ

本現場概要は、平成25年2月号で も発表させて頂いたので、詳しい資料 は省略させて頂く。

大土被り施工に関し切羽の安定につ いては、泥水式推進工法を採用したこ とが得策ではあったが、良質なテール ボイドを造成しても内部には残留してい る固形物が滑材と泥水しかなく、泥濃 式と比べ、テールボイドの性状の違い から、土被りが増したり、休止時間が

表-1 本浸水対策における主な対策メニュー例

	区分			対策手法・対策例
	ハード 対策	See al celaneal	雨水貯留施設	・雨水調整池、貯留管、雨水滞水池
		流出抑制 型施設	雨水浸透施設	・浸透ます、浸透トレンチ、浸透側溝・透水性舗装
		施設の有効活用	大規模幹線の貯留管としての	
			取水施設の早期整備	
			大規模幹線のネットワーク化	
公助			小規模管路における対応	・相互接続
			合流改善施設等の活用	・合流改善用貯留施設の浸水対策利用
		流下型 施設	管路施設ポンプ施設	・増補管、バイパス管による既存管路の増強 ・ポンプ場の新設および増設、高性能ポンプの導入 ・局地排水用小規模ポンプの設置
		効率的・効果的な施設の運用		・雨量計、水位計、流量計、監視カメラ、光ファイバー網等の設置による情報収集体制の構築 ・リアルタイムコントロールを利用したゲート、堰、ポンプ等の運転管理システムの構築
		非常時に備えた防災機能の確保		・可搬式ポンプ・移動ポンプ車の活用・ポンプ施設の耐水化・マンホール蓋の飛散防止
		他の事業主体との連携		・道路雨水ます蓋のグレーチング蓋への取替え ・道路雨水ますの増設及び道路横断・縦断側溝の設置 ・緑地・農用地による流出抑制
	ソフト対策	維持管理・体制		・雨期前の重点的管路清掃、ポンプ場の点検作業・危機管理体制、事前準備体制、下水道施設被災状況調査体制の構築
		情報収集 • 提供	降雨時・被災時・被災後	・光ファイバーネットワークの活用による浸水情報の収集・提供および処理・制御等 ・降雨・水位情報を利用した施設の効率的運用 ・降雨情報、幹線水位情報の提供 ・住民等からの浸水情報の収集と提供
			平常時 (防災)	・下水道雨水排水整備状況図の作成・公表 ・内水ハザードマップの作成・公表 ・過去の浸水履歴の表示 ・浸水に関する防災手引き・リーフレットの作成・配布 ・建築上の配慮に対する普及啓発 ・住民の理解を深めるための取り組み(でまえ授業・見学会・戸別訪問等) ・住民に判りやすい対策効果の設定と公表
		自助対策の支援	爰	・止水板および土のうの配布、各戸貯留・浸透施設の設置に対する支援制度
		他の事業主体との連携		・法律等による各戸貯留・浸透施設の設置促進を目的とした施策 ・土地利用規制等による浸水に強いまちづくり ・低地における住宅のかさ上げの義務付けを目的とした施策 ・雨水ポンプの運転調整 ・被災時支援
自助	ハード対策			 ・地下施設等の止水板の設置・耐水化、浸水時の土のう設置 ・地下(半地下)式駐車場の対応策 ・各戸の貯留・浸透施設の設置 ・建物の耐水化 ・地下室等の建築時の配慮
	ソフト対策			・道路雨水ますの清掃 ・土のう積み・体験訓練 ・避難所、避難経路等の確認、自主避難訓練 ・高齢者等災害時要援護者の支援 ・非常時持ち出し品の確保 ・災害ボランティアとの連携

の14,000kNであったが、鏡切断、水

長いとテールボイドの劣化の危険性は 増加する。

張り後の一次縁切りまでに6日間を費や 本現場でも到達時は、ほぼ計画通り したために、縁切り推進力は19,440kN まで跳ね上がってしまった(図-4)。