# 電磁波とCCDカメラの活用

濱田 十郎 ヤスダエンジニアリング(株) 技術開発部長



# はじめに

電磁波およびCCDカメラを活用した 最近の測量技術とその理論を誌面の許 す限り説明したいと思います。

都市圏の地下は、高度成長と共にイ ンフラ整備された、上下水道のほかに 電力、通信、ガスおよび地下交通シス テム等の地下構造物が輻輳して埋設さ れ、これらを構築するために設けられ た仮設のH型鋼や鋼矢板が多数残置 されております、推進工法やシールド 工法での施工にこれらが大きな障害と

なっております。この問題を解決するた めに、電磁波による前方探査装置(ミ リングモール工法に搭載)による金属 障害物の探査を行い、残置されたH型 鋼や鋼矢板を掘進機のカッタで切削除 去する工法の開発を行いました。

発進到達の立坑が小型化されるな かで、到達精度を確実なものにすると いう要望からGPS電磁波誘導測量装置 (ジャット工法、ミリングモール工法に 搭載)の考案いたしました。

CCDカメラセンサ(ジャット工法に搭 載)は小口径管推進で曲線、長距離の

しかも坑内での測量というニーズに答え るためのものでした。

以上3種類の計測方法を紹介いたし ます。

### 前方障害物探査の方法 (ミリングモール工法搭載)

### 2.1 探査原理

電磁探査にとって重要な原理は電磁 誘導です。電磁誘導とは変化する磁場 の中に導電体(金属物)を置けば、そ の物体に誘導起電力が発生すると云う ものです。変化する磁場とは、磁石を 動かすこと、あるいは電磁石(コイル) に交流を流すことで発生させることがで きます。導電体に発生した誘導起電力 は誘導電流を誘発します。また、電流 の流れはかならず磁場を発生するため、 誘導電流は、さらなる二次的な磁場を 発生します (図-1)。

ここで電磁石 (コイル) から発した 磁場を一次磁場、導電体から誘発した 磁場を二次磁場と呼びます。すなわち、 もし、掘進機前方に障害物がなければ、 この二次磁場の発生がないわけであり、 逆に障害物、特に金属などの障害物で あれば二次磁場が発生することになり ます。

時間変化する磁場(一次磁場(同相))→大地に誘導起電力(離相)が発生→大地に 誘導電流が流れる→誘導電流により磁場(二次磁場(離相))が発生

\* 誘導電流や二次磁場(二次場(離相))は地下の比抵抗構造の情報を含む。

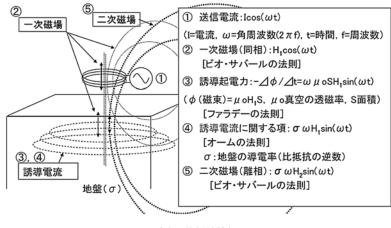



図-1 地中の比抵抗情報の原理

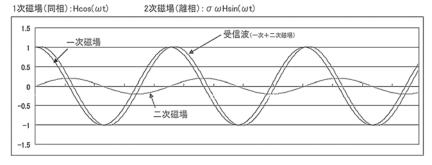
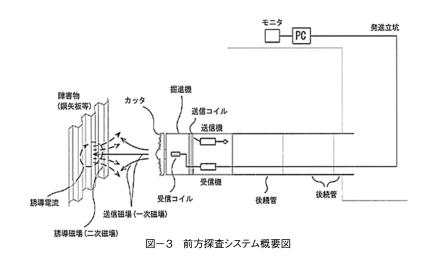
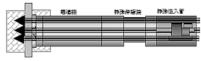



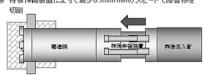

図-2 受信波と一次磁場、二次磁場



# 2.2 障害物により発生した 二次磁場の分離


障害物の存在を見極めるためには、 二次磁場の存在を分析する必要があり ます。ただし、実際の現場では、一次 磁場と二次磁場は混在した状態で存在 し、センサにて受信されます(図-2)。 さらに、障害物の存在を示す二次磁場 は一次磁場に比較して著しく小さいため 微弱な二次磁場の分析には特殊な分析 技術が必要となります。開発した装置 は、それを可能とするため、高分解能 を備えた測定装置としています。例え ば、受信機には24bitのアナログデジタ ル変換機(=電圧を224個の数値化に 置き換えコンピュータに取り込む)を用 いており、一次磁場と二次磁場との間 に大きな強度差があっても二次磁場を 分離できるようにしています。

次に、受信した波形から一次磁場か


ら二次磁場を分離する方法としては、 一次磁場と二次磁場の性質の違いを利 用しています。その性質の違いとは、 図-1の③の誘導起電力にあります。こ こで、例えば、一次磁場をcos (ωt) とすると誘導起電力はその時間微分(- $\Delta \phi / \Delta t$ ) でありsin ( $\omega t$ ) の関数と なります。よって、一次磁場と二次磁 場の分離には、受信波形からcos成分 とsin成分を分離すれば良いわけです。 その分離には、波形処理によく用いら れるフーリエ変換を用います。

フーリエ変換では、sinの同一の周波 数の波を掛け、足し合わせ、平均する ことでsinの振幅強度、すなわち障害物 から発生した二次磁場の強度を求める ことができます。また、cosに同一の処 理を行えば一次磁場の強度を求めるこ ともできます。開発装置は、これらを用 いて波形を分析し、前方の障害物を解 の金属障害物の探査をリアルタイムで行なう 掘進 ② 特殊伸縮装置によって低速度(最少0.1mm/min)のスピード 特殊使能力 种語体7

③ 特殊注入管により障害物骨面を地盤改良



の 特殊値縮装置によって最少0.1mm/minのスピードで聴害物を



障害物通過後、切削断面の抵抗を抑制するため固結滑材を



図-4 ミリングモール工法施工過程

析し探知します。

#### 2.3 障害物探査の実際

掘進機内に装備した送信機と送信用 の電磁石(以下、コイル)(掘進機本 体をコイルの鉄芯にしている)によっ て、掘進機前方に交流磁場を送信します (図-3)、その磁場が鋼矢板などの金 属障害物に当って、誘導電流を起こし ます、その誘導電流から、二次磁場が 発生し、その二次磁場を掘進機中に埋 め込んである受信コイルが感知します。 受信機によって受信された磁場を増幅、 AD変換し、コンピュータで計算処理し てモニタに表示する仕組みです。

## 2.4 ミリングモール工法施工過程

障害物探查、地盤改良、障害物切 削撤去機能を装備したミリングモール 工法の施工過程は(図-4)のように なります。