エースモール DL 工法

~進化し続ける位置計測技術 新たな挑戦へ~

武村 アイレック技建㈱ 非開削推進事業本部 第一技術部長

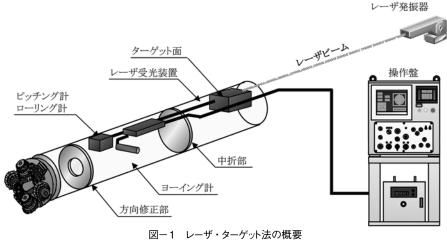
はじめに

エースモール工法の開発は昭和50 年代後半より、通信の地下管路設備の 構築を目的として行われてきました。工 法のシリーズとしては、エースモール PC10工法(圧入式二工程方式)、エー スモールPL30工法(圧入式一工程方 式)、エースモールDL35工法(泥土 圧式一工程方式)の三機種が開発され ました。特に、PL30工法およびDL35 工法においては、長距離推進を目標と して開発されました。当時の通信設備 の設計指針において、マンホール間の 最長距離が250mと定められていたこと から、これを目標として開発が進められ ました。長距離となれば道路形態も曲 線となることも想定され、機能的に曲線 推進が可能であることも大きな開発目 標として進められました。さらには立坑 築造等のコストを低減させるため、縦 断方向においても曲線推進が求められ ました。そういった中で、位置計測技 術の確立が重要なポイントであり、独 自の計測方法の開発により、小口径管 の曲線推進を初めて成功させた工法で あります。

本稿では、位置計測技術の開発経緯、 方式や適用事例等について報告すると ともに、現行の課題を克服する新しい 計測技術の開発について紹介致します。

レーザ・ターゲット法による 位置計測技術

2.1 レーザ・ターゲット法の概要


本方式は、直線区間の位置検知用と して、レーザ光線を先導体後方部に搭 載したCCDカメラにより受光し、レーザ 光線の重心点を求めることによって、位 置を計測しています ($\mathbf{Z} - \mathbf{1}$)。

2.2 レーザ・ターゲット法の特長

レーザ受光部が先導体後方部に設置 されているため、ヨーイング・ピッチン グ・ローリング等の計測データを基に、 ターゲット部の表示だけではなく、中折 れ部および方向修正部の位置予測値も 操作盤に表示しています。オペレータ に先導体前方部の情報を示すことによ り、方向制御の遅れ防止に役立ててい ます (図-2)。

2.3 レーザ・ターゲット法の課題

小口径管の位置計測では、レーザ光 線が管内の温度変化等により屈折する ことから、計測可能な距離が限定され ます。長距離の場合は高出力のレーザ 発振器により対応していますが、それ でも対応が困難な場合は、後述する電 磁法・液圧差法・prismを併用してい ます。なお、高出力のレーザ発振器は、 メーカからの供給が停止となったことも

あり、長距離推進においては、レーザ 光線のみでの対応がますます厳しくなる ものと思われます。

3 電磁法による水平位置計測技術

3.1 電磁法の概要

本方式は、地下に埋設されている通信管路やケーブルを電磁誘導法により探査する技術を応用したものです。磁界を発生させ、その磁界の影響により発生する誘起電圧(電流)を測定することで先導体の位置を算出するものです。発生する誘起電圧は極小のため、増幅回路により数 μ ボルトまで増幅します。

周辺では電力に起因した電磁界がいるんな周波数で発生しており、それらの影響が最も少ない周波数を実験により求め、設定しています。また、誘起電圧の計測方法としては、最大値法と最小値法の2通りがありますが、直線的に変化する最小値法を採用するなど、これらにより高精度の位置計測を実現させています(図-3、4、写真-1)。

3.2 電磁法の特長

電磁法は計画路線上に受信機を置く ことにより、自動計算でずれ量を算出す るなど、簡易な操作で計測ができ、短 時間で高精度な計測が可能です。本方 式は立坑を起点とした管内測量方式で はないため、距離の影響を全く受けな いのが一番大きな利点となっています。 水平位置と概算深度(土被り)の計測 が自動で計算され、概算深度について は推進初期時の計測データを基にした 校正が必要であります。

計測可能な土被りは機種により異なりますが、 $6 \sim 8m$ 程度まで可能としています(写真-2)。

3.3 電磁法の課題

①誘起電圧は土被りに4乗に反比例することから、計測土被りが制限される

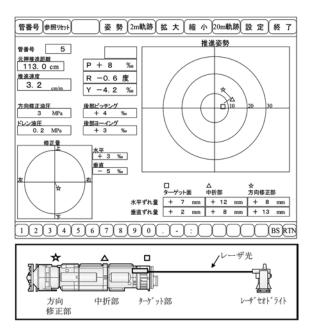


図-2 操作盤の表示例

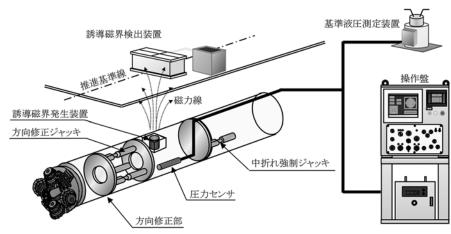


図-3 電磁法・液圧差法の概要

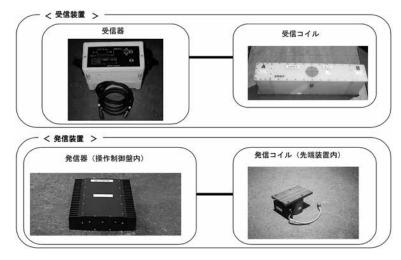


図-4 電磁法システム