低耐荷力管推進の 長距離・曲線を実現したベル工法 ~光学式ジャイロで曲線を高精度で安全に~

ベルエ法協会

ベル工法の概要

従来の硬質塩化ビニル推進管による 推進工法は、先端抵抗力を推進力伝達 ロッドに負担させ、地山との周面摩擦 力を推進管に負担させているため、推 進管の許容耐荷力と等しい距離が推進 可能距離となっている(図-1)。

ベル工法は、推進管の許容耐荷力を

写真-1 インナー支持装置

下回る本数毎に鋼製インナー装置のイ ンナー支持装置(写真-1)で推進管 を支持する。この方式により周面摩擦 力をインナー装置に負担させながら推 進するので、硬質塩化ビニル推進管の 耐荷力に制限されることなく長距離推進 を可能とした ($\mathbf{Z} - \mathbf{Z}$)。

ベル工法 測量システム開発の経緯

ベル工法は、防食性(耐久性)に優れ た硬質塩化ビニル推進管による鉄筋コ ンクリート推進管と同程度の長距離推 進を可能とした。さらに我が国の道路事 情に即した曲線推進を硬質塩化ビニル

推進管にて可能にする「夢の技術」を実 現した。曲線推進の測量には「電磁法」 が従来用いられてきた。しかし、磁力線 による測量が困難となる十被り(一般に は6m程度)、既設埋設管との併走ある いは河川・水路横断や鉄道横断等、さ らに交通車輌が頻繁で推進区間上での 測量作業が制限されるなど施工環境で の課題があり解決する必要性があった。 そこで「自走式計測ロボット」を開発し 高精度で安全な管内測量を実現した。

この他にも、インナー装置、排泥流 体輸送用ポンプ筒、滑材補助注入シス テム、ベル工法用推進管、掘進機の開 発がある。

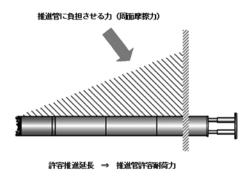
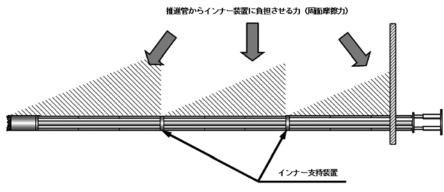
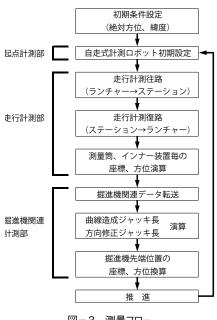




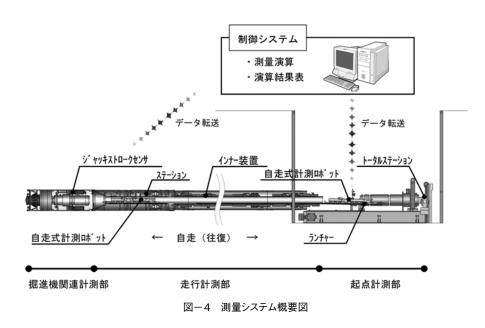
図-1 従来工法概念図

許容推進延長 ⇒ インナー装置許容耐荷力

図-2 ベルエ法概念図

図ー3 測量フロー

3 ベル工法測量システムの優位性


- ①曲線推進は、推進管内走行路を光学 式ジャイロおよび加速度計を搭載した 「自走式計測ロボット」が往復計測 することにより真北からの全体方位角 や距離を全推進管計測することがで きるので、長距離および複数曲線で も高精度の測量が可能である。
- ②推進管内測量なので土被りや既設埋 設管に影響されることがなく、河川・水 路横断や鉄道横断および交通量が多 い道路でも安全な測量が可能である。

ベル工法自動化測量システム

「自走式計測ロボット」による測量フ ローを図-3に、測量システム概要を 図-4に示し自動化測量システムの概 要を説明する。

4.1 初期条件設定

掘進前に発進立坑部において、測量 基線(初期掘進方向)の真北からの絶 対方位(必要精度0.5度)と国土地理 院の1/25,000地域地図等により計算さ れた緯度(必要精度2分)の初期条件

を設定する。

4.2 起点計測部

インナー装置後端にランチャーを固 定しトータルステーションにより「自走 式計測ロボット」に装備された視準ミ ラーと測距用プリズムを視準し正対角 を実測する。この実測データを基に測量 制御システム側で「自走式計測ロボット」 に与える初期方位と緯度を算出する。

4.3 走行計測部

「自走式計測ロボット」に4.2の初期 方位と緯度を与えた後、本測量の開始 命令を指示することで走行計測データ を監視記録しながら発進立坑部のラン チャーから掘進部のステーションに向か い往路走行が開始される。

往路走行が終了し、ステーションに 到達した「自走式計測ロボット」は自 動的に復路走行が開始される。往路走 行と同様のデータを監視記録しながら 発進立坑後部のランチャーに向かって 走行する。

「自走式計測ロボット」の往復走行完 了後4.2と同様に正対角を実測し、こ のデータと往復走行により得られた自走 式計測ロボット関連データを制御システ ム側に送信する。制御システム側では、

この自走式計測ロボット関連データより 座標系で表現された軌跡データの換算 を実施する。

【走行計測データ】

ヨーイング、ピッチング、ローリング、 距離、経過時間他

4.4 掘進機関連計測部

掘進機関連計測部(掘進機、ポンプ 筒、測量筒)の曲線造成ジャッキ、方 向修正ジャッキに装備されるストローク センサより得られる掘進機関連データ を制御システム側に送信する。

制御システム側では測量筒の中折点 よりも前にある機器の(X、Y)座標を 掘進機関連データ、自走式計測ロボッ トデータ、自走式計測ロボット起点計 測部データならびに初期条件から演算 を実施する。同時に掘進機に内蔵した 水レベル計よりも前にある機器のZ座標 を掘進機関連データ、発進立坑内の水 レベル計から演算を実施する。

この様に座標管理を行うことにより、 道路台帳や後施工で行う際の資料とし て活用ができる。

4.5 推進

上述した各演算結果より本測量結果 が得られれば、「自走式計測ロボット」、