解明恐構造物への到達

DAPPI工法における 発進到達事例と狭小立坑からの 発進方法の提案

くるだ ゆきひる **黒田 幸宏** 大豊建設㈱ 土木技術部

1 はじめに

近年、密閉型推進工法の施工技術は、 日本独特の施工環境を背景に、より高 度な施工条件に適合するように開発さ れてきている。特に、既設構造物への 直接到達技術や障害物撤去技術におい ては著しいものがある。

都市部の管路築造工事においては、 計画路線上に過去に施工した構造物や その構造物を構築する際に施工した仮 設構造物が残置されている場合があり、 これらの残置物が推進工法などで施工 する場合の大きな障害となっている。ま た、交通渋滞や輻輳する地下埋設物により、発進立坑ばかりでなく、到達立坑の設置が困難な場合も増加している。その結果、既設マンホールや既設シールドなどの構造物に直接到達させたり、狭小の到達立坑を施工して掘進機を分解・回収する施工技術、いわゆる回収型の推進工法を使用した施工事例が増加している。

このような施工環境の中で、回収型の推進工法に加え、掘進機内より地中障害物を安全確実に撤去できる着脱・再掘進型管路築造工法(以下、DAPPI工法)は、時代のニーズに適した工法

である。

本稿は、DAPPI 工法による過去の 施工事例4件のう ち、発進と到達に着目し、狭小の立坑 を施工して到達した事例2件と既設構 造物から発進し、既設構造物に到達し た事例1件の合計3件の施工事例につ いて紹介し、さらに施工事例ではない が、狭小立坑から発進する方法を提案 する。

2

DAPPI工法

2.1 DAPPI工法の概要

DAPPI掘進機は、写真-1のように、外殻と駆動部を構成する切羽掘進装置と呼ばれる内殻が分離でき、再び組み付けることが容易にできる構造となっている。切羽掘進装置は、図-1のように、推進管内径まで伸縮する可動式カッタスポークの採用で、推進管内を引き戻

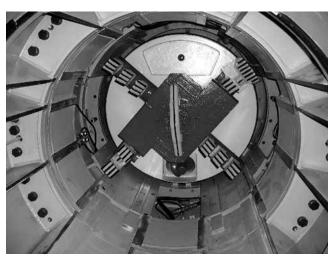
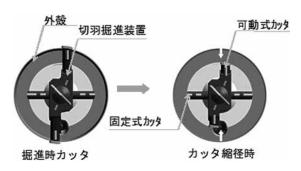



写真-1 切羽掘進装置引抜状況(工場内)

図ー1 カッタ伸縮状況図

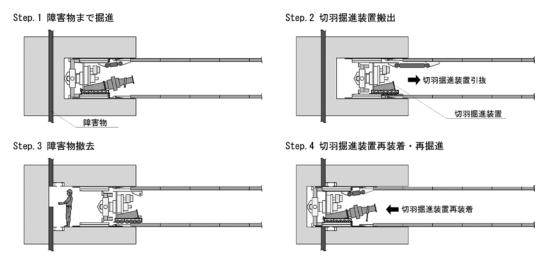


図-2 地中障害物撤去手順図

すことが可能となる。なお、カッタを駆動軸に対して偏心させることによって、より大きな伸縮量(ストローク)を確保することができる。

障害物の撤去作業は、機外からの作業を一切なくし、機内からの操作のみによって行う。まず可動式カッタスポークを縮め、続いて切羽掘進装置を外殻から切り離し後退させ、切羽に広い作業スペースを確保する。これによって、障害物の撤去が安全確実に行えるようになった。障害物撤去後、切羽掘進装置を容易かつ確実に再装着ができるように工夫した点も大きな要素である。

地中障害物まで推進し、障害物を撤去した後に再掘進するまでの標準的な施工手順を**図**-2に示す。

DAPPI工法の適用範囲は、呼び径 1350~3000であるが、呼び径 1650 以上の場合には、掘進機を新規に製作する必要がある。超大口径管推進工法やシールド工法への適用も可能であるが、同様に掘進機は新規に製作することになる。

2.2 DAPPI工法の特長

DAPPI工法は、単に到達回収できるだけでなく、路線途中に障害物があった場合に機内より撤去し、再掘進できる工法であるため、以下のような特長

を持っている。

(1) 障害物の目視確認

障害物が仮設構造物の場合、その付近には本体構造物があることが想定される。本工法の場合、目視により地中構造物を確認できるため、仮設・本体の区別および撤去の可否を大事になる前に判断できる。

(2) 広い作業スペースの確保

障害物撤去時は、切羽掘進装置を引き抜いて広い作業スペースを確保できるため、安全で確実な障害物の撤去が可能である。また、到達時は機内側からの鏡切が可能である。

(3) 複数回の着脱再掘進が可能

機内からの操作のみで引き抜き、再装着が可能なため、障害物撤去は複数回繰り返して行うことができる。また、到達立坑がない場合、切羽掘進装置を発進立坑まで引き抜くことでマンホール到達等の施工が可能である。

(4) 1台の切羽掘進装置で 異なる管径に対応

カッタの伸縮量が大きいため、推進 管規格で1~2ランク異なる管径の掘 進機に切羽掘進装置を転用できる。

(5) 掘進機内からの遠隔操作で 着脱が可能

機内からの遠隔操作でカッタを伸縮

できることから、切羽掘進装置の引き 抜き・再装着が容易で安全である。ま た、立坑やマンホールのない地中到達 でも施工は可能である。

(6) 複数の材質の異なる障害物に対応

障害物が鋼矢板の他に鉄筋または無筋コンクリートなど異なる材質の障害物があっても人力による撤去のため確実に撤去できる。

(7) 泥土加圧推進工法の採用

切羽の安定性と止水性に優れた泥土 加圧推進工法を採用することで、近接施 工に最適である。 残置物付近には本体 構造物があるため、地山への影響が少 ない推進工法であることは重要である。

3 発進および到達事例の概要

DAPPI工法により地中障害物を撤去し、管きょを施工した事例は、現在まで4件である。この4件の発進および到達の概要は、表-1および表-2に示す通りである。件数の後のカッコ内の数字は、表-3の施工事例の番号(No.)とし、②発進および到達施工事例の項でも同じ番号を使用している。

次に、上記4件の地中障害物撤去施工事例のうち、表-2の中の切羽掘進装置と外殻を一体として引上げた事例