爾细製管推進工法

多くの難しい施工実績がお助けマンの存在となる

重盛 知勇 ベビーモール協会 事務局

1 はじめに

現在下水道の全国的普及率は77.6% (平成26年度末)となり、残された場所は悪条件が重なっているところが多い。施工の目的も下水道の配管だけでなく千差万別である。その中でも鋼管削進で対応した箇所の数はかなり多い。

ただし、鋼管削進がお助けマンとして確実に働けるようになるには機械・器具・メタルクラウン・工法等、常に独創的な技術開発の継続であった。その過程で最も重要なことは理論と技術的要素と実績が伴って初めて現場で施工可能な工法となる。

工法の開発の中で一番難しい所を解決しないで、その工法は成り立たない。難しいことを無視し、途中からの工程だけで工法として取り上げているところも多い。そんな工法を、役所・コンサルそして施工業社等が現場で取り入れ、使えない工法と分かるのに3年はかかる。

現場で失敗を重ねる年数である。一つの工法が完成するには、独創的なアイデアと開発と改造を繰り返して、現場で確実に施工ができて初めて工法の完成である。

役所・コンサルそして施工業社等に

理解されるまでは長時間が必要となる。

2 ベビーモール工法を始めた当時 (1988年)

鋼管削進といえば ϕ 100mm以下の 地質調査ボーリング、水抜き、アンカ 等の施工が一般的であった。下水道 関係での目的としては、削進鋼管が ϕ 600mm以下である。排土するために人 間が鋼管の中に入っていた。そのため、 削進距離も10m前後がやっとであった。

また、既設管への取付管の接続は、 人間が中に入って中から止水をすることが可能な ϕ 800mm以上の下水管であった。それ以下の鋼管の取付管接続は不可能であった。施工の方法は、削進管でそのままぶち抜き、同時に管内に排土を落下させていた。

発進する立坑も φ 2,500mm 以上、 削進管もネジ切り管で回転の伝達は外部チャック方式等のため機械は大型となり小型化はできなかった。下水管内の 危険な硫化水素ガス等の発生の危険性 もあり大変危険の伴う工法であった。

べビーモール工法は 全工程に項目別に 独創的開発・改良を重ねる

3.1 排土について

 ϕ 100mmの小口径から ϕ 2,000mmの大口径まで削進鋼管1本毎に排土を行う方法とした。鋼管内で泥水にする。それにより、 $80\sim90\%$ は可能となり残りはバキュームでの吸入を併用して完了とした。削進に要する時間よりも何倍もかかっていた排土の時間が短縮した。

3.2 鋼管回転トルクの減少

接続作業時間、翌日のスタート時の 鋼管のシャーミング等による回転トルク の減少を可能とした。それに伴い機械 の小型化・発進立坑の小型化も可能に した。

3.3 方向制御について

ある程度の削進精度を上げるには方 向制御ができなければならない。ター ゲット等は使用しないで、土質による精 度率表を実施工の平均より定め鋼管径 の選定、機械の選定等を計算式で表す ことで、誰でも一定の企画設計計画を 可能とした。機械・削進可能距離、互 層地盤等の対応も可能とした。

3.4 溶接鋼管を使用

一般に施工する鋼管はネジ切り管を 使用していた。開発時はローム・土丹 の削進が主であったのでそれでも可能 だった。現在は鋼管削進の最大の特長 は玉石・礫・埋設物・シートパイル・鉄筋コンクリート互層地盤等の削進が主である。その上、削進鋼管範囲は多い。 ϕ 600~2,000mmはネジ切り管加工は不可能である。その上、互層地盤、玉石、礫地盤では左右両回転を必要とする。回転トルクの増加に伴う接続部の強度も強化する必要がある。

結果、現在は95%が溶接管使用と

なっている。また、方向制御のためにも左・右の回転は絶対に必要となることから溶接管の接続が基本である(\mathbf{Z} \mathbf{Z} \mathbf{Z} \mathbf{Z} \mathbf{Z}

3.5 埋設物切断削進

切断したあらゆる埋設物を鋼管内に 取り込みながら削進の継続が条件であ る。ロット棒・オーガ等が鋼管の中に あってはできない。削進の歯先もでき るだけ削進する面積を小さくするためリング状とする。歯は細かいほど安定した切断が可能である。リングビットの摩耗による削進管の引き抜き工事等はマイナス工事となるため基本的には行ってはならないことにしたい。削進中埋設物、その他により摩耗しても削進の継続が可能なビット(シャーククラウン)を開発した。歯先が摩耗すると、順次に新しい歯先が現れる構造になっている「シャーククラウン」である。

現在は、連続する埋設物の切断も歯 先交換により、引き抜き等のマイナス 工事は行わなくてもよい。鋼管内に取 込み、そのまま削進の継続も可能となっ た($\mathbf{表}-\mathbf{1}$)。

3.6 礫・玉石層での鋼管削進は難しい

一般の鋼管削進では切断中に玉石が動くため鋼管の回転軌跡が変わることにより回転が止まってしまい削進の継続が不可能となる。それを防止するため鋼管径を最大玉石径による選定方法をとっている(表-2)。

これは鋼管内に玉石を取込むことを 基本としている。削進中に玉石が鋼管 の中に取込まれた時に鋼管が大きく移 動しない範囲として定めたものである。 精度維持のためである。

しかし、玉石があまりにも大きくなる と、挿入塩ビ管径が小さい場合は不経 済である。

岩盤等一軸圧縮強度が200N/mm² 以上の場合はベビーモール鋼管削進工 法での世界ではない。

3.7 玉石・岩盤はやはり、エアハンマ による衝撃破砕式である「ビート リガー工法」を開発した

鋼管削進の延長として考えるためには推進力を少なくして斜坑発進を可能にする。埋設物の破砕ができないものに当たった場合ビットやハンマ、オーガを引き抜き可能とし、そのままベビーモール鋼管削進工法に切り換えること

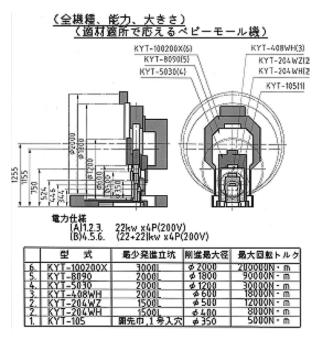


図-1 ベビーモール機 比較図および表

表-1 土質による削進距離選定基準(参考)

土質	一般メタルクラウン 削進距離(m)	シャーククラウン 削進距離(m)	径による修正値	
			150~600	600~1200
一般土質	50	100	1	0.7
土丹	50	100	1	0.7
砂	20	40	1	0.6
レキA	20	40	1	0.5
玉石	10	30	1	0.5
岩盤150~200	10	20	1	0.5
岩盤200~400	5	10	1	0.5
鉄筋コンクリート	2	5	1	0.5
400以上	0.1	0.5	1	0.5
鉄筋型鋼	1	10	1	0.5

表一2

削進延長	5m以内	10m以内	10m以上
鋼管径	1.5倍	2倍	3倍