解説

極小口径呼び径250の曲線推進を実現したカーブモールミニエ法

大石 東 t t **真樹** 地建興業㈱ 工務課課長

1 はじめに

小口径管推進工法は、発足以来さまざまな進化を遂げてきました。近年では、特に長距離化や曲線推進の分野で多くの技術が生まれました。

直線施工であれば、レーザ測量やターゲットをトランシットで確認する方法が一般的です。しかし、長距離や曲線推進の場合では大中口径管と異なり、管内へ直接入ることができないために、先導体や推進管の位置の確認方法が確立されていないと施工が不可能となります。そのため、位置を確認する測量方法が重要となります。

複数の測量技術がありますが、その中でもカーブモー

ル工法では画像処理方式 を採用しています。画像 処理方式の先駆けとして、 施工精度と確実性で多数 の採用をいただき現場施 工を行ってきました。

今回は、カーブモールでの経験を生かしさらなる極小口径管呼び径250の曲線推進を可能にしたカーブモールミニ工法について、概要と現場の報告をしたいと思います。

2 カーブモール工法と カーブモールミニ工法について

小口径管推進の測量方法は主な方法について①電磁波計測方式②カメラ方式(画像処理方式)③走行計測方式④レーザ連結方式⑤方位計方式などが挙げられます。

カーブモールミニ工法の前身であるカーブモール工法は、この中の②カメラ方式(画像処理方式)に該当します(図ー1)。この方式の特長ですが、管内の専用架台に背中合わせのカメラが搭載された中継ユニットを複数配置し、お互いをCCDカメラなどのデジタル画像を

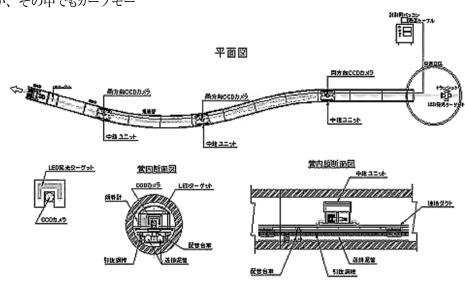


図-1 画像処理方式概念図



写真-1 中継ユニットTタイプ

撮影します。この画像に写ったターゲットの偏位を元に、 立坑から各位置をトラバースで結び測量する方法であり ます。電磁波計測方式と異なり管内での測量となるため に、管上部に存在する障害物の影響を受けずに計測が 可能となります。

カメラ同士をお互いに直視するために、長距離や曲線が多くなると設置する中継ユニットの数が多くなります。

カーブモール工法は、呼び径400~600を適用範囲として開発された中継ユニットであるために、呼び径350以下での施工には適しておらず管径を大きくして施工を行ってきました。

発注者からは、呼び径350以下での長距離、曲線 推進の要望があったためさらに小さな呼び径250、300 に対応できるシステムの開発を始めました。

3 カーブモールミニ工法の特長

3.1 発進立坑サイズは小型立坑 *φ*2,000mm

カーブモールミニ工法では、呼び径250、300での施工が可能です。そのため推進管長が半管1.0mとなり発進立坑は ϕ 2,000mm以上となり、経済的となります。

3.2 管内中継ユニット

カーブモールで使用している中継ユニット(Tタイプ 写真-1)では、管内への挿入が不可能となります。したがって、新しい小型化されたユニットの開発が必須となります。しかし、開発には時間がかかるために、測量器メーカよりユニット(Sタイプ 写真-2)をOEM供給で受けることにより対応しました。従来はコの字型のター

写真-2 中継ユニットSタイプ

ゲットを搭載していましたが、カーブモールミニで使用しているユニットは眼鏡型(丸いターゲットが左右に2つ)となります。

3.3 管内設備

カーブモール工法では、ユニット用のレールと配管は別となっていましたが、カーブモールミニでは管内の空間が限られているために、一体化したケーシングを作成しました(写真-3)。ケーシングの接続で、レールと配管が同時に接続(専用ジグ使用)できるため、管接続の時間短縮も可能になりました。また、ケーシング自体に強度があるために、引き抜き鋼棒も不要となります。

写真-3 管内ケーシング

3.4 計測用のソフト

カーブモールで使用している中継ユニット(Tタイプ)と、カーブモールミニで使用している中継ユニット(Sタイプ)では、互換性が無いために新たにSタイプ専用ソフトを作成しました(**写真-4**)。各ユニット単位での測量誤差をあらかじめ補正入力しているため、ユニットの精度ばらつきが少なく、ユニットの位置や入れ替えを行って