解説

泥濃式エスエスモール工法における 長距離施工の変遷

新川 大一ジオリード協会事務局長

泥濃式エスエスモール工法は、平成4年より25年以上継続する泥濃式推進工法のひとつに位置付けていただけるようになり、今日まで多彩な管きょ施工現場で活躍を続けています。泥濃式推進工法の大きな特徴である長距離・曲線施工は、さらに進歩を遂げて1,000mm以上の施工も実施されるようになりました。しかしながら、その歩みは開発・苦労・経験と、長年の経緯により確立してきたものであり、現在でも計画段階での過剰なほどの長距離・曲線施工の検討や要望の問い合わせがあります。

管きょ敷設事業には欠かせない推進工法ですが、この25年余りの泥濃式エスエスモール工法における長距離施工での経緯や開発への取り組み、施工事例などを記述したいと思います。

1 長距離推進への取り組み

泥濃式エスエスモール工法は、掘進機の掘削余掘り (テールボイド)の安定した形成により管外周面抵抗を 軽減させながら掘削・推進していきますので、基本的な 推進方法として低い推進力での施工が可能となり、長 距離施工に傾向し、優位になると考えられます。平成初 期のエスエスモール工法においても、当時200~300m 程度の実績から、400~500mの施工実績と推進延長 が長くなっていく経過がありました。当時の推進力算定 式についても現在とほぼ同一であり、どのようにすればさらに低推進力で施工が可能となるのか、推進工法のメカニズムおよび施工方法を勘案して技術開発する必要性が多くなってきました。そのときに「テールボイド部の安定形成」「管外周面抵抗値を下げる手段」「管外周部の圧力検出」という命題に達し、研究開発したのが「T・B・Kシステム」でした。

T・B・Kシステムは、管外周面へ自動的に滑材注入を行い、注入箇所の圧力損失を注入孔部で検出しながらテールボイド部の劣化を防止するといった、当時では画期的な考え方と装備を開発し、さらには専用滑材(TB

写真-1 T・B・Kシステム

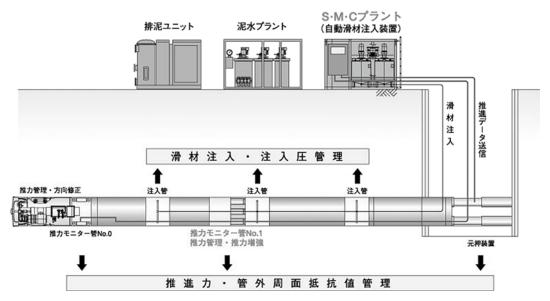


図-1 S·M·Cシステム フロー図

剤)を研究および製造して400m以上の長距離推進を 実現させてきました。実際の施工においても、推進力算 定結果よりはるかに低い推進力で施工が行え、長距離 や曲線施工で必要となる高耐荷力の推進管を使用せず に到達できるようになったのです。現在の泥濃式推進工 法では早くからこのようなシステムを確立したことで、各 方面から表彰されてきた経緯もありました。

そして、このT・B・Kシステムをさらに発展的にしたものが、現在エスエスモール工法や泥水式・土圧式マッドマックス工法でも採用している「S・M・Cシステム」です(写真-1、図-1)。

写真-2 S·M·Cプラント

2 推進力の低減方法

泥濃式推進の特徴でもあるオーバカット部(余掘り部)の形成と推進途中でこのテールボイドの劣化を防止する手段として管外周面へ均一および的確に滑材注入を行える方法として自動滑材注入装置(S・M・Cプラント)を配置し、地山との減摩効果により低推進力で施工します。このとき、土質の相違などによるテールボイド材または滑材の逸泥が懸念されますが、各種材料メーカ様の技術開発により、様々な土質に適合する滑材が採用されています。また、S・M・Cシステムにおける専用滑材「AZ-1(エーゼットワン)」は、土粒子の大きい、粒度の不均等な地盤や地下水が多量に発生する地盤などに適合しやすい滑材を研究および開発しており、主に砂質土または砂礫土対応としてご採用いただいています(写真-2、3)。

写真-3 S·M·C専用滑材「AZ-1」